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FIG. 6B
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FIELD OF THE INVENTION

The present invention relates in general to the field of
microprocessors, and particularly to microprocessors that
include conditional instructions in their instruction set.

BACKGROUND OF THE INVENTION

The x86 processor architecture, originally developed by
Intel Corporation of Santa Clara, Calif., and the Advanced
RISC Machines (ARM) architecture, originally developed by
ARM Ltd. of Cambridge, UK, are well known in the art of
computing. Many computing systems exist that include an
ARM or x86 processor, and the demand for them appears to
be increasing rapidly. Presently, the demand for ARM archi-
tecture processing cores appears to dominate low power, low
cost segments of the computing market, such as cell phones,
PDA’s, tablet PCs, network routers and hubs, and set-top
boxes (for example, the main processing power of the Apple
iPhone and iPad is supplied by an ARM architecture proces-
sor core), while the demand for x86 architecture processors
appears to dominate market segments that require higher
performance that justifies higher cost, such as in laptops,
desktops and servers. However, as the performance of ARM
cores increases and the power consumption and cost of cer-
tain models of x86 processors decreases, the line between the
different markets is evidently fading, and the two architec-
tures are beginning to compete head-to-head, for example in
mobile computing markets such as smart cellular phones, and
it is likely they will begin to compete more frequently in the
laptop, desktop and server markets.

This situation may leave computing device manufacturers
and consumers in a dilemma over which of the two architec-
tures will predominate and, more specifically, for which of the
two architectures software developers will develop more soft-
ware. For example, some entities purchase very large
amounts of computing systems each month or year. These
entities are highly motivated to buy systems that are the same
configuration due to the cost efficiencies associated with pur-
chasing large quantities of the same system and the simplifi-
cation of system maintenance and repair, for example. How-
ever, the user population of these large entities may have
diverse computing needs for these single configuration sys-
tems. More specifically, some of the users have computing
needs in which they want to run software on an ARM archi-
tecture processor, and some have computing needs in which
they want to run software on an x86 architecture processor,
and some may even want to run software on both. Still further,
new previously-unanticipated computing needs may emerge
that demand one architecture or the other. In these situations,
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a portion of the extremely large investment made by these
large entities may have been wasted. For another example, a
given user may have a crucial application that only runs on the
x86 architecture so he purchases an x86 architecture system,
but a version of the application is subsequently developed for
the ARM architecture that is superior to the x86 version (or
vice versa) and therefore the user would like to switch. Unfor-
tunately, he has already made the investment in the architec-
ture thathe does not prefer. Still further, a given user may have
invested in applications that only run on the ARM architec-
ture, but the user would also like to take advantage of fact that
applications in other areas have been developed for the x86
architecture that do not exist for the ARM architecture or that
are superior to comparable software developed for the ARM
architecture, or vice versa. It should be noted that although the
investment made by a small entity or an individual user may
not be as great as by the large entity in terms of magnitude,
nevertheless in relative terms the investment wasted may be
even larger. Many other similar examples of wasted invest-
ment may exist or arise in the context of a switch in domi-
nance from the x86 architecture to the ARM architecture, or
vice versa, in various computing device markets. Finally,
computing device manufacturers, such as OEMs, invest large
amounts of resources into developing new products. They are
caught in the dilemma also and may waste some of their
valuable development resources if they develop and manu-
facture mass quantities of a system around the x86 or ARM
architecture and then the user demand changes relatively
suddenly.

It would be beneficial for manufacturers and consumers of
computing devices to be able to preserve their investment
regardless of which of the two architectures prevails. There-
fore, what is needed is a solution that would allow system
manufacturers to develop computing devices that enable
users to run both x86 architecture and ARM architecture
programs.

The desire to have a system that is capable of running
programs of more than one instruction set has long existed,
primarily because customers may make a significant invest-
ment in software that runs on old hardware whose instruction
set is different from that of the new hardware. For example,
the IBM System/360 Model 30 included an IBM System
1401 compatibility feature to ease the pain of conversion to
the higher performance and feature-enhanced System/360.
The Model 30 included both a System/360 and a 1401 Read
Only Storage (ROS) Control, which gave it the capability of
being used in 1401 mode if the Auxiliary Storage was loaded
with needed information beforehand. Furthermore, where the
software was developed in a high-level language, the new
hardware developer may have little or no control over the
software compiled for the old hardware, and the software
developer may not have a motivation to re-compile the source
code for the new hardware, particularly if the software devel-
oper and the hardware developer are not the same entity.
Silberman and Ebcioglu proposed techniques for improving
performance of existing (“base”) CISC architecture (e.g.,
IBM S/390) software by running it on RISC, superscalar, and
Very Long Instruction Word (VLIW) architecture (“native”)
systems by including a native engine that executes native
code and a migrant engine that executes base object code,
with the ability to switch between the code types as necessary
depending upon the effectiveness of translation software that
translates the base object code into native code. See “An
Architectural Framework for Supporting Heterogeneous
Instruction-Set Architectures,” Siberman and Ebcioglu,
Computer, June 1993, No. 6. Van Dyke et al. disclosed a
processor having an execution pipeline that executes native
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RISC (Tapestry) program instructions and which also trans-
lates x86 program instructions into the native RISC instruc-
tions through a combination of hardware translation and soft-
ware translation, in U.S. Pat. No. 7,047,394, issued May 16,
2006. Nakada et al. proposed a heterogeneous SMT processor
with an Advanced RISC Machines (ARM) architecture front-
end pipeline for irregular (e.g., OS) programs and a Fujitsu
FR-V (VLIW) architecture front-end pipeline for multimedia
applications that feed an FR-V VLIW back-end pipeline with
an added VLIW queue to hold instructions from the front-end
pipelines. See “OROCHI: A Multiple Instruction Set SMT
Processor,” Proceedings of the First International Workshop
on New Frontiers in High-performance and Hardware-aware
Computing (HipHaC’08), Lake Como, Italy, November 2008
(In conjunction with MICRO-41), Buchty and Weib, eds,
Universitatsverlag Karlsruhe, ISBN 978-3-86644-298-6.
This approach was proposed in order to reduce the total
system footprint over heterogeneous System on Chip (SOC)
devices, such as the Texas Instruments OMAP that includes
an ARM processor core plus one or more co-processors (such
as the TMS320, various digital signal processors, or various
GPUs) that do not share instruction execution resources but
are instead essentially distinct processing cores integrated
onto a single chip.

Software translators, also referred to as software emula-
tors, software simulators, dynamic binary translators and the
like, have also been employed to support the ability to run
programs of one architecture on a processor of a different
architecture. A popular commercial example is the Motorola
68K-to-PowerPC emulator that accompanied Apple Macin-
tosh computers to permit 68K programs to run on a Macintosh
with a PowerPC processor, and a PowerPC-to-x86 emulator
was later developed to permit PowerPC programs to run on a
Macintosh with an x86 processor. Transmeta Corporation of
Santa Clara, Calif., coupled VLIW core hardware and “a pure
software-based instruction translator [referred to as “Code
Morphing Software”] [that] dynamically compiles or emu-
lates x86 code sequences” to execute x86 code. “Transmeta.”
Wikipedia. 2011. Wikimedia Foundation, Inc. <http://
en.wikipedia.org/wiki/Transmeta>. See also, for example,
U.S. Pat. No. 5,832,205, issued Nov. 3, 1998 to Kelly et al.
The IBM DAISY (Dynamically Architected Instruction Set
from Yorktown) system includes a VLIW machine and
dynamic binary software translation to provide 100% soft-
ware compatible emulation of old architectures. DAISY
includes a Virtual Machine Monitor residing in ROM that
parallelizes and saves the VLIW primitives to a portion of
main memory not visible to the old architecture in hopes of
avoiding re-translation on subsequent instances of the same
old architecture code fragments. DAISY includes fast com-
piler optimization algorithms to increase performance.
QEMU is a machine emulator that includes a software
dynamic translator. QEMU emulates a number of CPUs (e.g.,
x86, PowerPC, ARM and SPARC) on various hosts (e.g., x86,
PowerPC, ARM, SPARC, Alpha and MIPS). As stated by its
originator, the “dynamic translator performs a runtime con-
version of the target CPU instructions into the host instruction
set. The resulting binary code is stored in a translation cache
so that it can be reused . . . . QEMU is much simpler [than
other dynamic translators] because it just concatenates pieces
of' machine code generated off line by the GNU C Compiler.”
QEMU, a Fast and Portable Dynamic Translator, Fabrice
Bellard, USENIX Association, FREENIX Track: 2005
USENIX Annual Technical Conference. See also, “ARM
Instruction Set Simulation on Multi-Core x86 Hardware,”
Lee Wang Hao, thesis, University of Adelaide, Jun. 19, 2009.
However, while software translator-based solutions may pro-
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vide sufficient performance for a subset of computing needs,
they are unlikely to provide the performance required by
many users.

Static binary translation is another technique that has the
potential for high performance. However, there are technical
considerations (e.g., self-modifying code, indirect branches
whose value is known only at run-time) and commercial/legal
barriers (e.g., may require the hardware developer to develop
channels for distribution of the new programs; potential
license or copyright violations with the original program
distributors) associated with static binary translation.

One feature of the ARM ISA is conditional instruction
execution. As the ARM Architecture Reference Manual states
at page A4-3:

Most ARM instructions can be conditionally executed.
This means that they only have their normal effect on the
programmer’s model operation, memory and coproces-
sors if the N, Z, C and V flags in the APSR satisfy a
condition specified in the instruction. If the flags do not
satisfy the condition, the instruction acts as a NOP, that
is, execution advances to the next instruction as normal,
including any relevant checks for exceptions being
taken, but has no other effect.

Benefits of the conditional execution feature are that it
potentially facilitates smaller code size and may improve
performance by reducing the number of branch instructions
and concomitantly the performance penalties associated with
mispredicting them. Therefore, what is needed is a way to
efficiently perform conditional instructions, particularly in a
fashion that supports high microprocessor clock rates.

BRIEF SUMMARY OF INVENTION

In one aspect, the present invention provides a micropro-
cessor that processes conditional non-branch instructions,
wherein each conditional non-branch instruction specifies a
condition, wherein each conditional non-branch instruction
instructs the microprocessor to perform an operation if the
condition is satisfied and to not perform the operation if the
condition is not satisfied by condition flags of the micropro-
cessor. The microprocessor includes a predictor that provides
a prediction about a conditional non-branch instruction. The
microprocessor also includes an instruction translator that
translates the conditional non-branch instruction into a no-
operation microinstruction when the prediction predicts the
condition will not be satisfied, and translates the conditional
non-branch instruction into a set of one or more microinstruc-
tions to unconditionally perform the operation when the pre-
diction predicts the condition will be satisfied. The micropro-
cessor also includes an execution pipeline that executes the
no-operation microinstruction or the set of microinstructions
provided by the instruction translator.

In another aspect, the present invention provides a method
for processing conditional non-branch instructions by a
microprocessor, wherein each conditional non-branch
instruction specifies a condition, wherein each conditional
non-branch instruction instructs the microprocessor to per-
form an operation if the condition is satisfied and to not
perform the operation if the condition is not satisfied by
condition flags of the microprocessor. The method includes
providing a prediction about a conditional non-branch
instruction. The method also includes translating the condi-
tional non-branch instruction into a no-operation microin-
struction when the prediction predicts the condition will not
be satisfied. The method also includes translating the condi-
tional non-branch instruction into a set of one or more micro-
instructions to unconditionally perform the operation when
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the prediction predicts the condition will be satisfied. The
method also includes executing the no-operation microin-
struction or the set of microinstructions, wherein the execut-
ing is performed by a hardware execution pipeline of the
MiCroprocessor.

In yet another aspect, the present invention provides a
computer program product encoded in at least one computer
readable storage medium for use with a computing device, the
computer program product comprising computer readable
program code embodied in the medium for specifying a
microprocessor that processes conditional non-branch
instructions, wherein each conditional non-branch instruc-
tion specifies a condition, wherein each conditional non-
branch instruction instructs the microprocessor to perform an
operation if the condition is satisfied and to not perform the
operation if the condition is not satisfied by condition flags of
the microprocessor. The computer readable program code
includes first program code for specifying a predictor, con-
figured to provide a prediction about a conditional non-
branch instruction. The computer readable program code also
includes second program code for specifying an instruction
translator, configured to translate the conditional non-branch
instruction into a no-operation microinstruction when the
prediction predicts the condition will not be satisfied and
translate the conditional non-branch instruction into a set of
one or more microinstructions to unconditionally perform the
operation when the prediction predicts the condition will be
satisfied. The computer readable program code also includes
third program code for specifying an execution pipeline, con-
figured to execute the no-operation microinstruction or the set
of microinstructions provided by the instruction translator.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11is ablock diagram illustrating a microprocessor that
runs x86 ISA and ARM ISA machine language programs
according to the present invention.

FIG. 2 is a block diagram illustrating in more detail the
hardware instruction translator of FIG. 1.

FIG. 3 is a block diagram illustrating in more detail the
instruction formatter of FIG. 2.

FIG. 4 is a block diagram illustrating in more detail the
execution pipeline of FIG. 1.

FIG. 5 is a block diagram illustrating in more detail the
register file of FIG. 1.

FIG. 6 is a flowchart illustrating operation of the micropro-
cessor of FIG. 1.

FIG. 7 is a block diagram illustrating a dual-core micro-
processor according to the present invention.

FIG. 8 is a block diagram illustrating a microprocessor that
runs x86 ISA and ARM ISA machine language programs
according to an alternate embodiment of the present inven-
tion.

FIG. 9 is a block a diagram illustrating in more detail
portions of the microprocessor of FIG. 1.

FIG. 10 s a flowchart illustrating operation of the hardware
instruction translator of FIG. 1 to translate conditional ALU
instructions.

FIG. 11 is a flowchart illustrating operation of the execu-
tion units of FIG. 4 to execute a shift microinstruction.

FIG. 12 is a flowchart illustrating operation of the execu-
tion units of FIG. 4 to execute a conditional ALU microin-
struction.

FIG. 13 is a flowchart illustrating operation of the execu-
tion units of FIG. 4 to execute a conditional move microin-
struction.
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FIGS. 14 through 20 are block diagrams illustrating opera-
tion of the execution pipeline 112 of FIG. 1 to execute a
conditional ALU instruction of various types translated
according to FIG. 10.

FIG. 21 is a flowchart illustrating operation of the hardware
instruction translator of FIG. 1 to translate conditional ALU
instructions that specify one of the source registers to be the
same register as the destination register.

FIGS. 22 through 28 are block diagrams illustrating opera-
tion of the execution pipeline 112 of FIG. 1 to execute a
conditional ALU instruction of various types translated
according to FIG. 21.

FIG. 29 is a block diagram illustrating a microprocessor
that makes predictions of non-conditional branch instructions
according to the present invention.

FIG. 30 is a block diagram illustrating the translation of a
conditional ALU instruction by the instruction translator of
FIG. 29 according to the present invention.

FIG. 31 is a flowchart illustrating operation of the micro-
processor of FIG. 29 to execute a conditional ALU instruction
of FIG. 30 according to the present invention.

DETAILED DESCRIPTION OF THE INVENTION
Glossary

An instruction set defines the mapping of a set of binary
encoded values, which are machine language instructions, to
operations the microprocessor performs. (Typically, machine
language programs are encoded in binary, although other
number systems may be employed, for example, the machine
language programs of some older IBM computers were
encoded in decimal although they were ultimately repre-
sented by collections of physical signals having voltages
sensed as binary values.) [llustrative examples of the types of
operations machine language instructions may instruct a
microprocessor to perform are: add the operand in register 1
to the operand in register 2 and write the result to register 3,
subtract the immediate operand specified in the instruction
from the operand in memory location 0x12345678 and write
the result to register 5, shift the value in register 6 by the
number of bits specified in register 7, branch to the instruction
36 bytes after this instruction if the zero flag is set, load the
value from memory location 0xABCDO0000 into register 8.
Thus, the instruction set defines the binary encoded value
each machine language instruction must have to cause the
microprocessor to perform the desired operation. It should be
understood that the fact that the instruction set defines the
mapping of binary values to microprocessor operations does
not imply that a single binary value maps to a single micro-
processor operation. More specifically, in some instruction
sets, multiple binary values may map to the same micropro-
cessor operation.

An instruction set architecture (ISA), in the context of a
family of microprocessors, comprises: (1) an instruction set,
(2) a set of resources (e.g., registers and modes for addressing
memory) accessible by the instructions of the instruction set,
and (3) a set of exceptions the microprocessor generates in
response to processing the instructions of the instruction set
(e.g., divide by zero, page fault, memory protection viola-
tion). Because a programmer, such as an assembler or com-
piler writer, who wants to generate a machine language pro-
gram to run on a microprocessor family requires a definition
of its ISA, the manufacturer of the microprocessor family
typically defines the ISA in a programmer’s manual. For
example, at the time of its publication, the Intel 64 and IA-32
Architectures Software Developer’s Manual, March 2009
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(consisting of five volumes, namely Volume 1: Basic Archi-
tecture; Volume 2A: Instruction Set Reference, A-M; Volume
2B: Instruction Set Reference, N-Z; Volume 3A: System Pro-
gramming Guide; and Volume 3B: System Programming
Guide, Part 2), which is hereby incorporated by reference
herein in its entirety for all purposes, defined the ISA of the
Intel 64 and 1A-32 processor architecture, which is com-
monly referred to as the x86 architecture and which is also
referred to herein as x86, x86 ISA, x86 ISA family, x86
family or similar terms. For another example, at the time of'its
publication, the ARM Architecture Reference Manual, ARM
v7-A and ARM v7-R edition Errata markup, 2010, which is
hereby incorporated by reference herein in its entirety for all
purposes, defined the ISA of the ARM processor architecture,
which is also referred to herein as ARM, ARM ISA, ARM
ISA family, ARM family or similar terms. Other examples of
well-known ISA families are IBM System/360/370/390 and
z/Architecture, DEC VAX, Motorola 68k, MIPS, SPARC,
PowerPC, and DEC Alpha. The ISA definition covers a fam-
ily of processors because over the life of the ISA processor
family the manufacturer may enhance the ISA of the original
processor in the family by, for example, adding new instruc-
tions to the instruction set and/or new registers to the archi-
tectural register set. To clarify by example, as the x86 ISA
evolved itintroduced in the Intel Pentium III processor family
a set of 128-bit XMM registers as part of the SSE extensions,
and x86 ISA machine language programs have been devel-
oped to utilize the XMM registers to increase performance,
although x86 ISA machine language programs exist that do
not utilize the XMM registers of the SSE extensions. Further-
more, other manufacturers have designed and manufactured
microprocessors that run x86 ISA machine language pro-
grams. For example, Advanced Micro Devices (AMD) and
VIA Technologies have added new features, such as the AMD
3DNOW! SIMD vector processing instructions and the VIA
Padlock Security Engine random number generator and
advanced cryptography engine features, each of which are
utilized by some x86 ISA machine language programs but
which are not implemented in current Intel microprocessors.
To clarify by another example, the ARM ISA originally
defined the ARM instruction set state, having 4-byte instruc-
tions. However, the ARM ISA evolved to add, for example,
the Thumb instruction set state with 2-byte instructions to
increase code density and the Jazelle instruction set state to
accelerate Java bytecode programs, and ARM ISA machine
language programs have been developed to utilize some or all
of the other ARM ISA instruction set states, although ARM
ISA machine language programs exist that do not utilize the
other ARM ISA instruction set states.

A machine language program of an ISA comprises a
sequence of instructions of the ISA, i.e., a sequence of binary
encoded values that the ISA instruction set maps to the
sequence of operations the programmer desires the program
to perform. Thus, an x86 ISA machine language program
comprises a sequence of x86 ISA instructions; and an ARM
ISA machine language program comprises a sequence of
ARM ISA instructions. The machine language program
instructions reside in memory and are fetched and performed
by the microprocessor.

A hardware instruction translator comprises an arrange-
ment of transistors that receives an ISA machine language
instruction (e.g., an x86 ISA or ARM ISA machine language
instruction) as input and responsively outputs one or more
microinstructions directly to an execution pipeline of the
microprocessor. The results of the execution of the one or
more microinstructions by the execution pipeline are the
results defined by the ISA instruction. Thus, the collective
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execution of the one or more microinstructions by the execu-
tion pipeline “implements” the ISA instruction; that is, the
collective execution by the execution pipeline of the imple-
menting microinstructions output by the hardware instruction
translator performs the operation specified by the ISA
instruction on inputs specified by the ISA instruction to pro-
duce a result defined by the ISA instruction. Thus, the hard-
ware instruction translator is said to “translate” the ISA
instruction into the one or more implementing microinstruc-
tions. The present disclosure describes embodiments of a
microprocessor that includes a hardware instruction transla-
tor that translates x86 ISA instructions and ARM ISA instruc-
tions into microinstructions. It should be understood that the
hardware instruction translator is not necessarily capable of
translating the entire set of instructions defined by the x86
programmer’s manual nor the ARM programmer’s manual
but rather is capable of translating a subset of those instruc-
tions, just as the vast majority of x86 ISA and ARM ISA
processors support only a subset of the instructions defined by
their respective programmer’s manuals. More specifically,
the subset of instructions defined by the x86 programmer’s
manual that the hardware instruction translator translates
does not necessarily correspond to any existing x86 ISA
processor, and the subset of instructions defined by the ARM
programmer’s manual that the hardware instruction translator
translates does not necessarily correspond to any existing
ARM ISA processor.

An execution pipeline is a sequence of stages in which each
stage includes hardware logic and a hardware register for
holding the output of the hardware logic for provision to the
next stage in the sequence based on a clock signal of the
microprocessor. The execution pipeline may include multiple
such sequences of stages, i.e., multiple pipelines. The execu-
tion pipeline receives as input microinstructions and respon-
sively performs the operations specified by the microinstruc-
tions to output results. The hardware logic of the various
pipelines performs the operations specified by the microin-
structions that may include, but are not limited to, arithmetic,
logical, memory load/store, compare, test, and branch reso-
Iution, and performs the operations on data in formats that
may include, but are not limited to, integer, floating point,
character, BCD, and packed. The execution pipeline executes
the microinstructions that implement an ISA instruction (e.g.,
x86 and ARM) to generate the result defined by the ISA
instruction. The execution pipeline is distinct from the hard-
ware instruction translator; more specifically, the hardware
instruction translator generates the implementing microin-
structions and the execution pipeline executes them; further-
more, the execution pipeline does not generate the imple-
menting microinstructions.

An instruction cache is a random access memory device
within a microprocessor into which the microprocessor
places instructions of an ISA machine language program
(such as x86 ISA and ARM ISA machine language instruc-
tions) that were recently fetched from system memory and
performed by the microprocessor in the course of running the
ISA machine language program. More specifically, the ISA
defines an instruction address register that holds the memory
address of the next ISA instruction to be performed (defined
by the x86 ISA as an instruction pointer (IP) and by the ARM
ISA as a program counter (PC), for example), and the micro-
processor updates the instruction address register contents as
it runs the machine language program to control the flow of
the program. The ISA instructions are cached for the purpose
of subsequently fetching, based on the instruction address
register contents, the ISA instructions more quickly from the
instruction cache rather than from system memory the next
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time the flow of the machine language program is such that
the register holds the memory address of an ISA instruction
present in the instruction cache. In particular, an instruction
cache is accessed based on the memory address held in the
instruction address register (e.g., [P or PC), rather than exclu-
sively based on a memory address specified by a load or store
instruction. Thus, a dedicated data cache that holds ISA
instructions as data—such as may be present in the hardware
portion of a system that employs a software translator—that is
accessed exclusively based on a load/store address but not by
an instruction address register value is not an instruction
cache. Furthermore, a unified cache that caches both instruc-
tions and data, i.e., that is accessed based on an instruction
address register value and on a load/store address, but not
exclusively based on a load/store address, is intended to be
included in the definition of an instruction cache for purposes
of'the present disclosure. In this context, a load instruction is
an instruction that reads data from memory into the micro-
processor, and a store instruction is an instruction that writes
data to memory from the microprocessor.

A microinstruction set is the set of instructions (microin-
structions) the execution pipeline of the microprocessor can
execute.

Description of the Embodiments

The present disclosure describes embodiments of a micro-
processor that is capable of running both x86 ISA and ARM
ISA machine language programs by hardware translating
their respective x86 ISA and ARM ISA instructions into
microinstructions that are directly executed by an execution
pipeline of the microprocessor. The microinstructions are
defined by a microinstruction set of the microarchitecture of
the microprocessor distinct from both the x86 ISA and the
ARM ISA. As the microprocessor embodiments described
herein run x86 and ARM machine language programs, a
hardware instruction translator of the microprocessor trans-
lates the x86 and ARM instructions into the microinstructions
and provides them to the execution pipeline of the micropro-
cessor that executes the microinstructions that implement the
x86 and ARM instructions. Advantageously, the micropro-
cessor potentially runs the x86 and ARM machine language
programs faster than a system that employs a software trans-
lator since the implementing microinstructions are directly
provided by the hardware instruction translator to the execu-
tion pipeline for execution, unlike a software translator-based
system that stores the host instructions to memory before they
can be executed by the execution pipeline.

Referring now to FIG. 1, a block diagram illustrating a
microprocessor 100 that can run x86 ISA and ARM ISA
machine language programs according to the present inven-
tion is shown. The microprocessor 100 includes an instruc-
tion cache 102; a hardware instruction translator 104 that
receives x86 ISA instructions and ARM ISA instructions 124
from the instruction cache 102 and translates them into
microinstructions 126; an execution pipeline 112 that
receives the implementing microinstructions 126 from the
hardware instruction translator 104 executes them to generate
microinstruction results 128 that are forwarded back as oper-
ands to the execution pipeline 112; a register file 106 and a
memory subsystem 108 that each provide operands to the
execution pipeline 112 and receive the microinstruction
results 128 therefrom; an instruction fetch unit and branch
predictor 114 that provides a fetch address 134 to the instruc-
tion cache 102; an ARM ISA-defined program counter (PC)
register 116 and an x86 ISA-defined instruction pointer (IP)
register 118 that are updated by the microinstruction results



US 9,274,795 B2

11

128 and whose contents are provided to the instruction fetch
unit and branch predictor 114; and configuration registers 122
that provide an instruction mode indicator 132 and an envi-
ronment mode indicator 136 to the hardware instruction
translator 104 and the instruction fetch unit and branch pre-
dictor 114 and that are updated by the microinstruction results
128.

As the microprocessor 100 performs x86 ISA and ARM
ISA machine language instructions, it fetches the instructions
from system memory (not shown) into the microprocessor
100 according to the flow of the program. The microprocessor
100 caches the most recently fetched x86 ISA and ARM ISA
machine language instructions in the instruction cache 102.
The instruction fetch unit 114 generates a fetch address 134
from which to fetch a block 0of x86 ISA or ARM ISA instruc-
tion bytes from system memory. The instruction cache 102
provides to the hardware instruction translator 104 the block
of x86 ISA or ARM ISA instruction bytes 124 at the fetch
address 134 if it hits in the instruction cache 102; otherwise,
the ISA instructions 124 are fetched from system memory.
The instruction fetch unit 114 generates the fetch address 134
based on the values in the ARM PC 116 and x86 IP 118. More
specifically, the instruction fetch unit 114 maintains a fetch
address in a fetch address register. Each time the instruction
fetch unit 114 fetches a new block of ISA instruction bytes, it
updates the fetch address by the size of the block and contin-
ues sequentially in this fashion until a control flow event
occurs. The control flow events include the generation of an
exception, the prediction by the branch predictor 114 that a
taken branch was present in the fetched block, and an update
by the execution pipeline 112 to the ARM PC 116 and x86 IP
118 in response to a taken executed branch instruction that
was not predicted taken by the branch predictor 114. In
response to a control flow event, the instruction fetch unit 114
updates the fetch address to the exception handler address,
predicted target address, or executed target address, respec-
tively. An embodiment is contemplated in which the instruc-
tion cache 102 is a unified cache in that it caches both ISA
instructions 124 and data. It is noted that in the unified cache
embodiments, although the unified cache may be accessed
based on a load/store address to read/write data, when the
microprocessor 100 fetches ISA instructions 124 from the
unified cache, the unified cache is accessed based on the ARM
PC 116 and x86 IP 118 values rather than a load/store address.
The instruction cache 102 is a random access memory (RAM)
device.

The instruction mode indicator 132 is state that indicates
whether the microprocessor 100 is currently fetching, format-
ting/decoding, and translating x86 ISA or ARM ISA instruc-
tions 124 into microinstructions 126. Additionally, the execu-
tion pipeline 112 and memory subsystem 108 receive the
instruction mode indicator 132 which affects the manner of
executing the implementing microinstructions 126, albeit for
a relatively small subset of the microinstruction set. The x86
1P register 118 holds the memory address of the next x86 ISA
instruction 124 to be performed, and the ARM PC register
116 holds the memory address of the next ARM ISA instruc-
tion 124 to be performed. To control the flow of the program,
the microprocessor 100 updates the x86 IP register 118 and
ARM PC register 116 as the microprocessor 100 performs the
x86 and ARM machine language programs, respectively,
either to the next sequential instruction or to the target address
of'a branch instruction or to an exception handler address. As
the microprocessor 100 performs instructions of x86 ISA and
ARM ISA machine language programs, it fetches the ISA
instructions of the machine language programs from system
memory and places them into the instruction cache 102
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replacing less recently fetched and performed instructions.
The fetch unit 114 generates the fetch address 134 based on
the x86 IP register 118 or ARM PC register 116 value,
depending upon whether the instruction mode indicator 132
indicates the microprocessor 100 is currently fetching ISA
instructions 124 in x86 or ARM mode. In one embodiment,
the x86 IP register 118 and the ARM PC register 116 are
implemented as a shared hardware instruction address regis-
ter that provides its contents to the instruction fetch unit and
branch predictor 114 and that is updated by the execution
pipeline 112 according to x86 or ARM semantics based on
whether the instruction mode indicator 132 indicates x86 or
ARM, respectively.

The environment mode indicator 136 is state that indicates
whether the microprocessor 100 is to apply x86 ISA or ARM
ISA semantics to various execution environment aspects of
the microprocessor 100 operation, such as virtual memory,
exceptions, cache control, and global execution-time protec-
tion. Thus, the instruction mode indicator 132 and environ-
ment mode indicator 136 together create multiple modes of
execution. In a first mode in which the instruction mode
indicator 132 and environment mode indicator 136 both indi-
cate x86 ISA, the microprocessor 100 operates as a normal
x86 ISA processor. In a second mode in which the instruction
mode indicator 132 and environment mode indicator 136 both
indicate ARM ISA, the microprocessor 100 operates as a
normal ARM ISA processor. A third mode, in which the
instruction mode indicator 132 indicates x86 ISA but the
environment mode indicator 136 indicates ARM ISA, may
advantageously be used to perform user mode x86 machine
language programs under the control of an ARM operating
system or hypervisor, for example; conversely, a fourth mode,
in which the instruction mode indicator 132 indicates ARM
ISA but the environment mode indicator 136 indicates x86
ISA, may advantageously be used to perform user mode
ARM machine language programs under the control of an
x86 operating system or hypervisor, for example. The instruc-
tion mode indicator 132 and environment mode indicator 136
values are initially determined at reset. In one embodiment,
the initial values are encoded as microcode constants but may
be modified by a blown configuration fuse and/or microcode
patch. In another embodiment, the initial values are provided
by an external input to the microprocessor 100. In one
embodiment, the environment mode indicator 136 may only
be changed after reset by a reset-to-ARM 124 or reset-to-x86
instruction 124 (described below with respect to FIG. 6); that
is, the environment mode indicator 136 may not be changed
during normal operation of the microprocessor 100 without
resetting the microprocessor 100, either by a normal reset or
by a reset-to-x86 or reset-to-ARM instruction 124.

The hardware instruction translator 104 receives as input
the x86 ISA and ARM ISA machine language instructions
124 and in response to each provides as output one or more
microinstructions 126 that implement the x86 or ARM ISA
instruction 124. The collective execution of the one or more
implementing microinstructions 126 by the execution pipe-
line 112 implements the x86 or ARM ISA instruction 124.
That is, the collective execution performs the operation speci-
fied by the x86 or ARM ISA instruction 124 on inputs speci-
fied by the x86 or ARM ISA instruction 124 to produce a
result defined by the x86 or ARM ISA instruction 124. Thus,
the hardware instruction translator 104 translates the x86 or
ARM ISA instruction 124 into the one or more implementing
microinstructions 126. The hardware instruction translator
104 comprises a collection of transistors arranged in a prede-
termined manner to translate the x86 ISA and ARM ISA
machine language instructions 124 into the implementing
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microinstructions 126. The hardware instruction translator
104 comprises Boolean logic gates (e.g., of simple instruction
translator 204 of FIG. 2) that generate the implementing
microinstructions 126. In one embodiment, the hardware
instruction translator 104 also comprises a microcode ROM
(e.g., element 234 of the complex instruction translator 206 of
FIG. 2) that the hardware instruction translator 104 employs
to generate implementing microinstructions 126 for complex
ISA instructions 124, as described in more detail with respect
to FIG. 2. Preferably, the hardware instruction translator 104
is not necessarily capable of translating the entire set of ISA
instructions 124 defined by the x86 programmer’s manual nor
the ARM programmer’s manual but rather is capable of trans-
lating a subset of those instructions. More specifically, the
subset of ISA instructions 124 defined by the x86 program-
mer’s manual that the hardware instruction translator 104
translates does not necessarily correspond to any existing x86
ISA processor developed by Intel, and the subset of ISA
instructions 124 defined by the ARM programmer’s manual
that the hardware instruction translator 104 translates does
not necessarily correspond to any existing ISA processor
developed by ARM Ltd. The one or more implementing
microinstructions 126 that implement an x86 or ARM ISA
instruction 124 may be provided to the execution pipeline 112
by the hardware instruction translator 104 all at once or as a
sequence. Advantageously, the hardware instruction transla-
tor 104 provides the implementing microinstructions 126
directly to the execution pipeline 112 for execution without
requiring them to be stored to memory in between. In the
embodiment of the microprocessor 100 of FIG. 1, as the
microprocessor 100 runs an x86 or ARM machine language
program, each time the microprocessor 100 performs an x86
or ARM instruction 124, the hardware instruction translator
104 translates the x86 or ARM machine language instruction
124 into the implementing one or more microinstructions
126. However, the embodiment of FIG. 8 employs a micro-
instruction cache to potentially avoid re-translation each time
the microprocessor 100 performs an x86 or ARM ISA
instruction 124. Embodiments of the hardware instruction
translator 104 are described in more detail with respect to
FIG. 2.

The execution pipeline 112 executes the implementing
microinstructions 126 provided by the hardware instruction
translator 104. Broadly speaking, the execution pipeline 112
is a general purpose high-speed microinstruction processor,
and other portions of the microprocessor 100, such as the
hardware instruction translator 104, perform the bulk of the
x86/ARM-specific functions, although functions performed
by the execution pipeline 112 with x86/ARM-specific knowl-
edge are discussed herein. In one embodiment, the execution
pipeline 112 performs register renaming, superscalar issue,
and out-of-order execution of the implementing microin-
structions 126 received from the hardware instruction trans-
lator 104. The execution pipeline 112 is described in more
detail with respect to FIG. 4.

The microarchitecture of the microprocessor 100 includes:
(1) the microinstruction set; (2) a set of resources accessible
by the microinstructions 126 of the microinstruction set,
which is a superset of the x86 ISA and ARM ISA resources;
and (3) a set of micro-exceptions the microprocessor 100 is
defined to generate in response to executing the microinstruc-
tions 126, which is a superset of the x86 ISA and ARM ISA
exceptions. The microarchitecture is distinct from the x86
ISA and the ARM ISA. More specifically, the microinstruc-
tion set is distinct from the x86 ISA and ARM ISA instruction
sets in several aspects. First, there is not a one-to-one corre-
spondence between the set of operations that the microin-
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structions of the microinstruction set may instruct the execu-
tion pipeline 112 to perform and the set of operations that the
instructions of the x86 ISA and ARM ISA instruction sets
may instruct the microprocessor to perform. Although many
of'the operations may be the same, there may be some opera-
tions specifiable by the microinstruction set that are not speci-
fiable by the x86 ISA and/or the ARM ISA instruction sets;
conversely, there may be some operations specifiable by the
x86 ISA and/or the ARM ISA instruction sets that are not
specifiable by the microinstruction set. Second, the microin-
structions of the microinstruction set are encoded in a distinct
manner from the manner in which the instructions of the x86
ISA and ARM ISA instruction sets are encoded. That is,
although many of the same operations (e.g., add, shift, load,
return) are specifiable by both the microinstruction set and the
x86 ISA and ARM ISA instruction sets, there is not a one-to-
one correspondence between the binary opcode value-to-op-
eration mappings of the microinstruction set and the x86 or
ARM ISA instruction sets. If there are binary opcode value-
to-operation mappings that are the same in the microinstruc-
tion set and the x86 or ARM ISA instruction set, they are,
generally speaking, by coincidence, and there is nevertheless
not a one-to-one correspondence between them. Third, the
fields of the microinstructions of the microinstruction set do
not have a one-to-one correspondence with the fields of the
instructions of the x86 or ARM ISA instruction set.

The microprocessor 100, taken as a whole, can perform
x86 ISA and ARM ISA machine language program instruc-
tions. However, the execution pipeline 112 cannot execute
x86 or ARM ISA machine language instructions themselves;
rather, the execution pipeline 112 executes the implementing
microinstructions 126 of the microinstruction set of the
microarchitecture of the microprocessor 100 into which the
x86 ISA and ARM ISA instructions are translated. However,
although the microarchitecture is distinct from the x86 ISA
and the ARM ISA, alternate embodiments are contemplated
in which the microinstruction set and other microarchitec-
ture-specific resources are exposed to the user; that is, in the
alternate embodiments the microarchitecture may effectively
be a third ISA, in addition to the x86 ISA and ARM ISA,
whose machine language programs the microprocessor 100
can perform.

Table 1 below describes some of the fields of a microin-
struction 126 of the microinstruction set according to one
embodiment of the microprocessor 100.

TABLE 1
Field Description
opcode operation to be performed (see instruction list below)
destination specifies destination register of microinstruction result
source 1 specifies source of first input operand (e.g., general
purpose register, floating point register,
microarchitecture-specific register, condition
flags register, immediate, displacement, useful
constants, the next sequential instruction
pointer value)
source 2 specifies source of second input operand
source 3 specifies source of third input operand (cannot be

GPR or FPR)

condition upon which the operation will be
performed if satisfied and not performed

if not satisfied

encoded number of bytes of operands used by
this microinstruction

encoded number of bytes of address generated
by this microinstruction

needed for x87-style floating point instructions

condition code

operand size
address size

top of x87 FP
register stack
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Table 2 below describes some of the microinstructions in
the microinstruction set according to one embodiment of the
microprocessor 100.

16

operands. The execution pipeline 112 writes its results 128 to
the register file 106 and receives operands for the microin-
structions 126 from the register file 106. The hardware regis-

TABLE 2
Instruction Description
ALU-type e.g., add, subtract, rotate, shift, Boolean, multiply, divide,
floating-point ALU, media-type ALU (e.g., packed operations)
load/store load from memory into register/store to memory from register
conditional jump jump to target address if condition is satisfied, e.g., zero, greater
than, not equal; may specify either ISA flags or
microarchitecture-specific (i.e., non-ISA visible) condition flags
move move value from source register to destination register

conditional move

move to control

move value from source register to destination register if
condition is satisfied
move value from general purpose register to control register

register

move from control move value to general purpose register from control register

register

gprefetch guaranteed cache line prefetch instruction (i.e., not a hint,
always prefetches, unless certain exception conditions)

grabline performs zero beat read-invalidate cycle on processor bus to
obtain exclusive ownership of cache line without reading data
from system memory (since it is known the entire cache line
will be written)

load pram load from PRAM (private microarchitecture-specific RAM, i.e.,
not visible to ISA, described more below) into register

store pram store to PRAM

jump condition on/off

jump to target address if “static” condition is satisfied (within
relevant timeframe, programmer guarantees there are no older,
unretired microinstructions that may change the “static”
condition); faster because resolved by complex instruction
translator rather than execution pipeline

call call subroutine

return return from subroutine

set bit on/off set/clear bit in register

copy bit copy bit value from source register to destination register

branch to next
sequential instruction

branch to next sequential x86 or ARM ISA instruction after the
x86 or ARM ISA instruction from which this microinstruction

pointer was translated

fence wait until all microinstructions have drained from the execution
pipeline to execute the microinstruction that comes after this
microinstruction

indirect jump unconditional jump through a register value

The microprocessor 100 also includes some microarchi-
tecture-specific resources, such as microarchitecture-specific
general purpose registers, media registers, and segment reg-
isters (e.g., used for register renaming or by microcode) and
control registers that are not visible by the x86 or ARM ISA,
and a private RAM (PRAM) described more below. Addition-
ally, the microarchitecture can generate exceptions, referred
to as micro-exceptions, that are not specified by and are not
seen by the x86 or ARM ISA, typically to perform a replay of
a microinstruction 126 and dependent microinstructions 126,
such as in the case of: a load miss in which the execution
pipeline 112 assumes a load hit and replays the load micro-
instruction 126 if it misses; a TLB miss, to replay the micro-
instruction 126 after the page table walk and TLB fill; a
floating point microinstruction 126 that received a denormal
operand that was speculated to be normal that needs to be
replayed after the execution pipeline 112 normalizes the oper-
and; a load microinstruction 126 that was executed, but after
which an older address-colliding store microinstruction 126
was detected, requiring the load microinstruction 126 to be
replayed. It should be understood that the fields listed in Table
1, the microinstructions listed in Table 2, and the microarchi-
tecture-specific resources and microarchitecture-specific
exceptions just listed are merely given as examples to illus-
trate the microarchitecture and are by no means exhaustive.

The register file 106 includes hardware registers used by
the microinstructions 126 to hold source and/or destination

40

45

ters instantiate the x86 ISA-defined and ARM ISA-defined
registers. In one embodiment, many of the general purpose
registers defined by the x86 ISA and the ARM ISA share
some instances of registers of the register file 106. For
example, in one embodiment, the register file 106 instantiates
fifteen 32-bit registers that are shared by the ARM ISA reg-
isters RO through R14 and the x86 ISA EAX through R14D
registers. Thus, for example, if a first microinstruction 126
writes a value to the ARM R2 register, then a subsequent
second microinstruction 126 that reads the x86 ECX register
will receive the same value written by the first microinstruc-
tion 126, and vice versa. This advantageously enables x86
ISA and ARM ISA machine language programs to commu-
nicate quickly through registers. For example, assume an
ARM machine language program running under an ARM
machine language operating system effects a change in the
instruction mode 132 to x86 ISA and control transfer to an
x86 machine language routine to perform a function, which
may be advantageous because the x86 ISA may support cer-
tain instructions that can perform a particular operation faster
than in the ARM ISA. The ARM program can provide needed
data to the x86 routine in shared registers of the register file
106. Conversely, the x86 routine can provide the results in
shared registers of the register file 106 that will be visible to
the ARM program upon return to it by the x86 routine. Simi-
larly, an x86 machine language program running under an
x86 machine language operating system may effect a change
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in the instruction mode 132 to ARM ISA and control transfer
to an ARM machine language routine; the x86 program can
provide needed data to the ARM routine in shared registers of
the register file 106, and the ARM routine can provide the
results in shared registers of the register file 106 that will be
visible to the x86 program upon return to it by the ARM
routine. A sixteenth 32-bit register that instantiates the x86
R15D register is not shared by the ARM R15 register since
ARM R15 is the ARM PC register 116, which is separately
instantiated. Additionally, in one embodiment, the thirty-two
32-bit ARM VFPv3 floating-point registers share 32-bit por-
tions of the x86 sixteen 128-bit XMMO through XMM15
registers and the sixteen 128-bit Advanced SIMD (“Neon™)
registers. The register file 106 also instantiates flag registers
(namely the x86 EFLAGS register and ARM condition flags
register), and the various control and status registers defined
by the x86 ISA and ARM ISA. The architectural control and
status registers include x86 architectural model specific reg-
isters (MSRs) and ARM-reserved coprocessor (8-15) regis-
ters. The register file 106 also instantiates non-architectural
registers, such as non-architectural general purpose registers
used in register renaming and used by microcode 234, as well
as non-architectural x86 MSRs and implementation-defined,
or vendor-specific, ARM coprocessor registers. The register
file 106 is described further with respect to FIG. 5.

The memory subsystem 108 includes a cache memory
hierarchy of cache memories (in one embodiment, a level-1
instruction cache 102, level-1 data cache, and unified level-2
cache). The memory subsystem 108 also includes various
memory request queues, e.g., load, store, fill, snoop, write-
combine buffer. The memory subsystem 108 also includes a
memory management unit (MMU) that includes translation
lookaside buffers (TLBs), preferably separate instruction and
data TLBs. The memory subsystem 108 also includes a table
walk engine for obtaining virtual to physical address transla-
tions in response to a TLB miss. Although shown separately
in FIG. 1, the instruction cache 102 is logically part of the
memory subsystem 108. The memory subsystem 108 is con-
figured such that the x86 and ARM machine language pro-
grams share a common memory space, which advantageously
enables x86 and ARM machine language programs to com-
municate easily through memory.

The memory subsystem 108 is aware of the instruction
mode 132 and environment mode 136 which enables it to
perform various operations in the appropriate ISA context.
For example, the memory subsystem 108 performs certain
memory access violation checks (e.g., limit violation checks)
based on whether the instruction mode indicator 132 indi-
cates x86 or ARM ISA. For another example, in response to a
change of the environment mode indicator 136, the memory
subsystem 108 flushes the TL.Bs; however, the memory sub-
system 108 does not flush the TL.Bs in response to a change of
the instruction mode indicator 132, thereby enabling better
performance in the third and fourth modes described above in
which one of the instruction mode indicator 132 and environ-
ment mode indicator 136 indicates x86 and the other indicates
ARM. For another example, in response to a TLB miss, the
table walk engine performs a page table walk to populate the
TLB using either x86 page tables or ARM page tables
depending upon whether the environment mode indicator 136
indicates x86 ISA or ARM ISA. For another example, the
memory subsystem 108 examines the architectural state of
the appropriate x86 ISA control registers that affect the cache
policies (e.g., CRO CD and NW bits) if the state indicator 136
indicates x86 ISA and examines the architectural state of the
appropriate ARM ISA control registers (e.g., SCTLR I and C
bits) if the environment mode indicator 136 indicates ARM
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ISA. For another example, the memory subsystem 108 exam-
ines the architectural state of the appropriate x86 ISA control
registers that affect the memory management (e.g., CRO PG
bit) if the state indicator 136 indicates x86 ISA and examines
the architectural state of the appropriate ARM ISA control
registers (e.g., SCTLR M bit) if the environment mode indi-
cator 136 indicates ARM ISA. For another example, the
memory subsystem 108 examines the architectural state of
the appropriate x86 ISA control registers that affect the align-
ment checking (e.g., CRO AM bit) if the state indicator 136
indicates x86 ISA and examines the architectural state of the
appropriate ARM ISA control registers (e.g., SCTLR A bit) if
the environment mode indicator 136 indicates ARM ISA. For
another example, the memory subsystem 108 (as well as the
hardware instruction translator 104 for privileged instruc-
tions) examines the architectural state of the appropriate x86
ISA control registers that specify the current privilege level
(CPL) if the state indicator 136 indicates x86 ISA and exam-
ines the architectural state of the appropriate ARM ISA con-
trol registers that indicate user or privileged mode if the
environment mode indicator 136 indicates ARM ISA. How-
ever, in one embodiment, the x86 ISA and ARM ISA share
control bits/registers of the microprocessor 100 that have
analogous function, rather than the microprocessor 100
instantiating separate control bits/registers for each ISA.
Although shown separately, the configuration registers 122
may be considered part of the register file 106. The configu-
ration registers 122 include a global configuration register
that controls operation of the microprocessor 100 in various
aspects regarding the x86 ISA and ARM ISA, such as the
ability to enable or disable various features. The global con-
figuration register may be used to disable the ability of the
microprocessor 100 to perform ARM ISA machine language
programs, i.e., to make the microprocessor 100 an x86-only
microprocessor 100, including disabling other relevant
ARM-specific capabilities such as the launch-x86 and reset-
t0-x86 instructions 124 and implementation-defined copro-
cessor registers described herein. The global configuration
register may also be used to disable the ability of the micro-
processor 100 to perform x86 ISA machine language pro-
grams, i.e., to make the microprocessor 100 an ARM-only
microprocessor 100, and to disable other relevant capabilities
such as the launch-ARM and reset-to-ARM instructions 124
and new non-architectural MSRs described herein. In one
embodiment, the microprocessor 100 is manufactured ini-
tially with default configuration settings, such as hardcoded
values in the microcode 234, which the microcode 234 uses at
initialization time to configure the microprocessor 100,
namely to write the configuration registers 122. However,
some configuration registers 122 are set by hardware rather
than by microcode 234. Furthermore, the microprocessor 100
includes fuses, readable by the microcode 234, which may be
blown to modify the default configuration values. In one
embodiment, microcode 234 reads the fuses and performs an
exclusive-OR operation with the default value and the fuse
value and uses the result to write to the configuration registers
122. Still further, the modifying effect of the fuses may be
reversed by a microcode 234 patch. The global configuration
register may also be used, assuming the microprocessor 100
is configured to perform both x86 and ARM programs, to
determine whether the microprocessor 100 (or a particular
core 100 in a multi-core part, as described with respect to FIG.
7) will boot as an x86 or ARM microprocessor when reset, or
in response to an x86-style INIT, as described in more detail
below with respect to FIG. 6. The global configuration regis-
ter also includes bits that provide initial default values for
certain architectural control registers, for example, the ARM
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ISA SCTLT and CPACR registers. In a multi-core embodi-
ment, such as described with respect to FIG. 7, there exists a
single global configuration register, although each core is
individually configurable, for example, to boot as either an
x86 or ARM core, i.e., with the instruction mode indicator
132 and environment mode indicator 136 both set to x86 or
ARM, respectively; furthermore, the launch-ARM instruc-
tion 126 and launch-x86 instruction 126 may be used to
dynamically switch between the x86 and ARM instruction
modes 132. In one embodiment, the global configuration
register is readable via an x86 RDMSR instruction to a new
non-architectural MSR and a portion of the control bits
therein are writeable via an x86 WRMSR instruction to the
new non-architectural MSR, and the global configuration
register is readable via an ARM MRC/MRRC instruction to
an ARM coprocessor register mapped to the new non-archi-
tectural MSR and the portion of the control bits therein are
writeable via an ARM MCR/MCRR instruction to the ARM
coprocessor register mapped to the new non-architectural
MSR.

The configuration registers 122 also include various con-
trol registers that control operation of the microprocessor 100
in various aspects that are non-x86/ARM-specific, also
referred to herein as global control registers, non-ISA control
registers, non-x86/ARM control registers, generic control
registers, and similar terms. In one embodiment, these control
registers are accessible via both x86 RDMSR/WRMSR
instructions to non-architectural MSRs and ARM MCR/
MRC (or MCRR/MRRC) instructions to new implementa-
tion-defined coprocessor registers. For example, the micro-
processor 100 includes non-x86/ARM-specific control
registers that determine fine-grained cache control, i.e., finer-
grained than provided by the x86 ISA and ARM ISA control
registers.

In one embodiment, the microprocessor 100 provides
ARM ISA machine language programs access to the x86 ISA
MSRs via implementation-defined ARM ISA coprocessor
registers that are mapped directly to the corresponding x86
MSRs. The MSR address is specified in the ARM ISA R1
register. The data is read from or written to the ARM ISA
register specified by the MRC/MRRC/MCR/MCRR instruc-
tion. In one embodiment, a subset of the MSRs are password
protected, i.e., the instruction attempting to access the MSR
must provide a password; in this embodiment, the password is
specified in the ARM R7:R6 registers. If the access would
cause an x86 general protection fault, the microprocessor 100
causes an ARM ISA UND exception. In one embodiment,
ARM coprocessor 4 (address: 0,7, 15, 0) is used to access the
corresponding x86 MSRs.

The microprocessor 100 also includes an interrupt control-
ler (not shown) coupled to the execution pipeline 112. In one
embodiment, the interrupt controller is an x86-style advanced
programmable interrupt controller (APIC) that maps x86 ISA
interrupts into ARM ISA interrupts. In one embodiment, the
x86 INTR maps to an ARM IRQ Interrupt; the x86 NMI maps
to an ARM IRQ Interrupt; the x86 INIT causes an INIT-reset
sequence from which the microprocessor 100 started in
whichever ISA (x86 or ARM) it originally started out of a
hardware reset; the x86 SMI maps to an ARM FIQ Interrupt;
and the x86 STPCLK, A20, Thermal, PREQ, and Rebranch
are not mapped to ARM interrupts. ARM machine language
programs are enabled to access the APIC functions via new
implementation-defined ARM coprocessor registers. In one
embodiment, the APIC register address is specified in the
ARM RO register, and the APIC register addresses are the
same as the x86 addresses. In one embodiment, ARM copro-
cessor 6 (address: 0, 7, nn, 0, where nn is 15 for accessing the
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APIC, and 12-14 for accessing the bus interface unit to per-
form 8-bit, 16-bit, and 32-bit IN/OUT cycles on the processor
bus) isused for privileged mode functions typically employed
by operating systems. The microprocessor 100 also includes
a bus interface unit (not shown), coupled to the memory
subsystem 108 and execution pipeline 112, for interfacing the
microprocessor 100 to a processor bus. In one embodiment,
the processor bus is conformant with one of the various Intel
Pentium family microprocessor buses. ARM machine lan-
guage programs are enabled to access the bus interface unit
functions via new implementation-defined ARM coprocessor
registers in order to generate 1/O cycles on the processor bus,
i.e., IN and OUT bus transfers to a specified address in 1/O
space, which are needed to communicate with a chipset of'a
system, e.g., to generate an SMI acknowledgement special
cycle, or I/O cycles associated with C-state transitions. In one
embodiment, the /O address is specified in the ARM RO
register. In one embodiment, the microprocessor 100 also
includes power management capabilities, such as the well-
known P-state and C-state management. ARM machine lan-
guage programs are enabled to perform power management
via new implementation-defined ARM coprocessor registers.
In one embodiment, the microprocessor 100 also includes an
encryption unit (not shown) in the execution pipeline 112. In
one embodiment, the encryption unit is substantially similar
to the encryption unit of VIA microprocessors that include the
Padlock capability. ARM machine language programs are
enabled to access the encryption unit functions, such as
encryption instructions, via new implementation-defined
ARM coprocessor registers. In one embodiment ARM copro-
cessor 5 is used for user mode functions typically employed
by user mode application programs, such as those that may
use the encryption unit feature.

As the microprocessor 100 runs x86 ISA and ARM ISA
machine language programs, the hardware instruction trans-
lator 104 performs the hardware translation each time the
microprocessor 100 performs an x86 or ARM IS A instruction
124. It is noted that, in contrast, a software translator-based
system may be able to improve its performance by re-using a
translation in many cases rather than re-translating a previ-
ously translated machine language instruction. Furthermore,
the embodiment of FIG. 8 employs a microinstruction cache
to potentially avoid re-translation each time the microproces-
sor 100 performs an x86 or ARM ISA instruction 124. Each
approach may have performance advantages depending upon
the program characteristics and the particular circumstances
in which the program is run.

The branch predictor 114 caches history information about
previously performed both x86 and ARM branch instructions.
The branch predictor 114 predicts the presence and target
address of both x86 and ARM branch instructions 124 within
a cache line as it is fetched from the instruction cache 102
based on the cached history. In one embodiment, the cached
history includes the memory address of the branch instruction
124, the branch target address, a direction (taken/not taken)
indicator, type of branch instruction, start byte within the
cache line of the branch instruction, and an indicator of
whether the instruction wraps across multiple cache lines. In
one embodiment, the branch predictor 114 is enhanced to
predict the direction of ARM ISA conditional non-branch
instructions, as described in U.S. Provisional Application No.
61/473,067, filed Apr. 7, 2011, entitled APPARATUS AND
METHOD FOR USING BRANCH PREDICTION TO EFFI-
CIENTLY EXECUTE CONDITIONAL NON-BRANCH
INSTRUCTIONS. In one embodiment, the hardware instruc-
tion translator 104 also includes a static branch predictor that
predicts a direction and branch target address for both x86 and
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ARM branch instructions based on the opcode, condition
code type, backward/forward, and so forth.

Various embodiments are contemplated that implement
different combinations of features defined by the x86 ISA and
ARM ISA. For example, in one embodiment, the micropro-
cessor 100 implements the ARM, Thumb, ThumbEE, and
Jazelle instruction set states, but provides a trivial implemen-
tation of the Jazelle extension; and implements the following
instruction set extensions: Thumb-2, VFPv3-D32, Advanced
SIMD (“Neon™), multiprocessing, and VMSA; and does not
implement the following extensions: security extensions, fast
context switch extension, ARM debug features (however, x86
debug functions are accessible by ARM programs via ARM
MCR/MRC instructions to new implementation-defined
coprocessor registers), performance monitoring counters
(however, x86 performance counters are accessible by ARM
programs via the new implementation-defined coprocessor
registers). For another example, in one embodiment, the
microprocessor 100 treats the ARM SETEND instruction as a
NOP and only supports the Little-endian data format. For
another example, in one embodiment, the microprocessor
100 does not implement the x86 SSE 4.2 capabilities.

Embodiments are contemplated in which the microproces-
sor 100 is an enhancement of a commercially available micro-
processor, namely a VIA Nano™ Processor manufactured by
VIA Technologies, Inc., of Taipei, Taiwan, which is capable
of running x86 ISA machine language programs butnot ARM
ISA machine language programs. The Nano microprocessor
includes a high performance register-renaming, superscalar
instruction issue, out-of-order execution pipeline and a hard-
ware translator that translates x86 ISA instructions into
microinstructions for execution by the execution pipeline.
The Nano hardware instruction translator may be substan-
tially enhanced as described herein to translate ARM ISA
machine language instructions, in addition to x86 machine
language instructions, into the microinstructions executable
by the execution pipeline. The enhancements to the hardware
instruction translator may include enhancements to both the
simple instruction translator and to the complex instruction
translator, including the microcode. Additionally, new micro-
instructions may be added to the microinstruction set to sup-
port the translation of ARM ISA machine language instruc-
tions into the microinstructions, and the execution pipeline
may be enhanced to execute the new microinstructions. Fur-
thermore, the Nano register file and memory subsystem may
be substantially enhanced as described herein to support the
ARM ISA, including sharing of certain registers. The branch
prediction units may also be enhanced as described herein to
accommodate ARM branch instruction prediction in addition
to x86 branches. Advantageously, a relatively modest amount
of modification is required to the execution pipeline of the
Nano microprocessor to accommodate the ARM ISA instruc-
tions since it is already largely ISA-agnostic. Enhancements
to the execution pipeline may include the manner in which
condition code flags are generated and used, the semantics
used to update and report the instruction pointer register, the
access privilege protection method, and various memory
management-related functions, such as access violation
checks, paging and TLB use, and cache policies, which are
listed only as illustrative examples, and some of which are
described more below. Finally, as mentioned above, various
features defined in the x86 ISA and ARM ISA may not be
supported in the Nano-enhancement embodiments, such as
x86 SSE 4.2 and ARM security extensions, fast context
switch extension, debug, and performance counter features,
which are listed only as illustrative examples, and some of
which are described more below. The enhancement of the
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Nano processor to support running ARM ISA machine lan-
guage programs is an example of an embodiment that makes
synergistic use of design, testing, and manufacturing
resources to potentially bring to market in a timely fashion a
single integrated circuit design that can run both x86 and
ARM machine language programs, which represent the vast
majority of existing machine language programs. In particu-
lar, embodiments of the microprocessor 100 design described
herein may be configured as an x86 microprocessor, an ARM
microprocessor, or a microprocessor that can concurrently
run both x86 ISA and ARM ISA machine language programs.
The ability to concurrently run both x86 ISA and ARM ISA
machine language programs may be achieved through
dynamic switching between the x86 and ARM instruction
modes 132 on a single microprocessor 100 (or core 100—see
FIG. 7), through configuring one or more cores 100 in a
multi-core microprocessor 100 (as described with respect to
FIG. 7) as an ARM core and one or more cores as an X86 core,
or through a combination of the two, i.e., dynamic switching
between the x86 and ARM instruction modes 132 on each of
the multiple cores 100. Furthermore, historically, ARM ISA
cores have been designed as intellectual property cores to be
incorporated into applications by various third-party vendors,
such as SOC and/or embedded applications. Therefore, the
ARM ISA does not specify a standardized processor bus to
interface the ARM core to the rest of the system, such as a
chipset or other peripheral devices. Advantageously, the
Nano processor already includes a high speed x86-style pro-
cessor bus interface to memory and peripherals and a memory
coherency structure that may be employed synergistically by
the microprocessor 100 to support running ARM ISA
machine language programs in an x86 PC-style system envi-
ronment.

Referring now to FIG. 2, a block diagram illustrating in
more detail the hardware instruction translator 104 of FIG. 1
is shown. The hardware instruction translator 104 comprises
hardware, more specifically a collection of transistors. The
hardware instruction translator 104 includes an instruction
formatter 202 that receives the instruction mode indicator 132
and the blocks of x86 ISA and ARM ISA instruction bytes
124 from the instruction cache 102 of FIG. 1 and outputs
formatted x86 ISA and ARM ISA instructions 242; a simple
instruction translator (SIT) 204 that receives the instruction
mode indicator 132 and environment mode indicator 136 and
outputs implementing microinstructions 244 and a micro-
code address 252; a complex instruction translator (CIT) 206
(also referred to as a microcode unit) that receives the micro-
code address 252 and the environment mode indicator 136
and provides implementing microinstructions 246; and a mux
212 that receives microinstructions 244 from the simple
instruction translator 204 on one input and that receives the
microinstructions 246 from the complex instruction transla-
tor 206 on the other input and that provides the implementing
microinstructions 126 to the execution pipeline 112 of FIG. 1.
The instruction formatter 202 is described in more detail with
respect to FIG. 3. The simple instruction translator 204
includes an x86 SIT 222 and an ARM SIT 224. The complex
instruction translator 206 includes a micro-program counter
(micro-PC) 232 that receives the microcode address 252, a
microcode read only memory (ROM) 234 that receives a
ROM address 254 from the micro-PC 232, a microsequencer
236 that updates the micro-PC 232, an instruction indirection
register (IIR) 235, and a microtranslator 237 that generates
the implementing microinstructions 246 output by the com-
plex instruction translator 206. Both the implementing micro-
instructions 244 generated by the simple instruction transla-
tor 204 and the implementing microinstructions 246
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generated by the complex instruction translator 206 are
microinstructions 126 of the microinstruction set of the
microarchitecture of the microprocessor 100 and which are
directly executable by the execution pipeline 112.

The mux 212 is controlled by a select input 248. Normally,
the mux 212 selects the microinstructions from the simple
instruction translator 204; however, when the simple instruc-
tion translator 204 encounters a complex x86 or ARM ISA
instruction 242 and transfers control, or traps, to the complex
instruction translator 206, the simple instruction translator
204 controls the select input 248 to cause the mux 212 to
select microinstructions 246 from the complex instruction
translator 206. When the RAT 402 (of FIG. 4) encounters a
microinstruction 126 with a special bit set to indicate it is the
last microinstruction 126 in the sequence implementing the
complex ISA instruction 242, the RAT 402 controls the select
input 248 to cause the mux 212 to return to selecting micro-
instructions 244 from the simple instruction translator 204.
Additionally, the reorder buffer 422 controls the select input
248 to cause the mux 212 to select microinstructions 246 from
the complex instruction translator 206 when the reorder
buffer 422 (see FIG. 4) is ready to retire a microinstruction
126 whose status requires such, for example if the status
indicates the microinstruction 126 has caused an exception
condition.

The simple instruction translator 204 receives the ISA
instructions 242 and decodes them as x86 ISA instructions if
the instruction mode indicator 132 indicate x86 and decodes
them as ARM ISA instructions if the instruction mode indi-
cator 132 indicates ARM. The simple instruction translator
204 also determines whether the ISA instructions 242 are
simple or complex ISA instructions. A simple ISA instruction
242 is one for which the simple instruction translator 204 can
emit all the implementing microinstructions 126 that imple-
ment the ISA instruction 242; that is, the complex instruction
translator 206 does not provide any of the implementing
microinstructions 126 for a simple ISA instruction 124. In
contrast, a complex ISA instruction 124 requires the complex
instruction translator 206 to provide at least some, if not all, of
the implementing microinstructions 126. In one embodiment,
for a subset of the instructions 124 of the ARM and x86 ISA
instruction sets, the simple instruction translator 204 emits a
portion of the microinstructions 244 that implement the x86/
ARM ISA instruction 126 and then transfers control to the
complex instruction translator 206 which subsequently emits
the remainder of the microinstructions 246 that implement
the x86/ARM ISA instruction 126. The mux 212 is controlled
to first provide the implementing microinstructions 244 from
the simple instruction translator 204 as microinstructions 126
to the execution pipeline 112 and second to provide the imple-
menting microinstructions 246 from the complex instruction
translator 206 as microinstructions 126 to the execution pipe-
line 112. The simple instruction translator 204 knows the
starting microcode ROM 234 address of the various micro-
code routines employed by the hardware instruction transla-
tor 104 to generate the implementing microinstructions 126
for various complex ISA instructions 124, and when the
simple instruction translator 204 decodes a complex ISA
instruction 242, it provides the relevant microcode routine
address 252 to the micro-PC 232 of the complex instruction
translator 206. The simple instruction translator 204 emits all
the microinstructions 244 needed to implement a relatively
large percentage of the instructions 124 of the ARM and x86
ISA instruction sets, particularly ISA instructions 124 that
tend to be performed by x86 ISA and ARM ISA machine
language programs with a high frequency, and only a rela-
tively small percentage requires the complex instruction
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translator 206 to provide implementing microinstructions
246. According to one embodiment, examples of x86 instruc-
tions that are primarily implemented by the complex instruc-
tion translator 206 are the RDMSR/WRMSR, CPUID, com-
plex mathematical instructions (e.g., FSQRT and
transcendental instructions), and IRET instructions; and
examples of ARM instructions that are primarily imple-
mented by the complex instruction translator 206 are the
MCR, MRC, MSR, MRS, SRS, and RFE instructions. The
preceding list is by no means exhaustive, but provides an
indication of the type of ISA instructions implemented by the
complex instruction translator 206.

When the instruction mode indicator 132 indicates x86, the
x86 SIT 222 decodes the x86 ISA instructions 242 and trans-
lates them into the implementing microinstructions 244;
when the instruction mode indicator 132 indicates ARM, the
ARM SIT 224 decodes the ARM ISA instructions 242 and
translates them into the implementing microinstructions 244.
In one embodiment, the simple instruction translator 204 is a
block of Boolean logic gates synthesized using well-known
synthesis tools. In one embodiment, the x86 SIT 222 and the
ARM SIT 224 are separate blocks of Boolean logic gates;
however, in another embodiment, the x86 SIT 222 and the
ARM SIT 224 are a single block of Boolean logic gates. In
one embodiment, the simple instruction translator 204 trans-
lates up to three ISA instructions 242 and provides up to six
implementing microinstructions 244 to the execution pipe-
line 112 per clock cycle. In one embodiment, the simple
instruction translator 204 comprises three sub-translators (not
shown) that each translate a single formatted ISA instruction
242: the first sub-translator is capable of translating a format-
ted ISA instruction 242 that requires no more than three
implementing microinstructions 126; the second sub-transla-
tor is capable of translating a formatted ISA instruction 242
that requires no more than two implementing microinstruc-
tions 126; and the third sub-translator is capable of translating
a formatted ISA instruction 242 that requires no more than
one implementing microinstruction 126. In one embodiment,
the simple instruction translator 204 includes a hardware state
machine that enables it to output multiple microinstructions
244 that implement an ISA instruction 242 over multiple
clock cycles.

In one embodiment, the simple instruction translator 204
also performs various exception checks based on the instruc-
tion mode indicator 132 and/or environment mode indicator
136. For example, if the instruction mode indicator 132 indi-
cates x86 and the x86 SIT 222 decodes an ISA instruction 124
that is invalid for the x86 ISA, then the simple instruction
translator 204 generates an x86 invalid opcode exception;
similarly, if the instruction mode indicator 132 indicates
ARM and the ARM SIT 224 decodes an ISA instruction 124
that is invalid for the ARM ISA, then the simple instruction
translator 204 generates an ARM undefined instruction
exception. For another example, if the environment mode
indicator 136 indicates the x86 ISA, then the simple instruc-
tion translator 204 checks to see whether each x86 ISA
instruction 242 it encounters requires a particular privilege
level and, if so, checks whether the CPL satisfies the required
privilege level for the x86 ISA instruction 242 and generates
an exception if not; similarly, if the environment mode indi-
cator 136 indicates the ARM ISA, then the simple instruction
translator 204 checks to see whether each formatted ARM
ISA instruction 242 is a privileged mode instruction and, if so,
checks whether the current mode is a privileged mode and
generates an exception if the current mode is user mode. The
complex instruction translator 206 performs a similar func-
tion for certain complex ISA instructions 242.
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The complex instruction translator 206 outputs a sequence
of implementing microinstructions 246 to the mux 212. The
microcode ROM 234 stores ROM instructions 247 of micro-
code routines. The microcode ROM 234 outputs the ROM
instructions 247 in response to the address of the next ROM
instruction 247 to be fetched from the microcode ROM 234,
which is held by the micro-PC 232. Typically, the micro-PC
232 receives its initial value 252 from the simple instruction
translator 204 in response to the simple instruction translator
204 decoding a complex ISA instruction 242. In other cases,
such as in response to a reset or exception, the micro-PC 232
receives the address of the reset microcode routine address or
appropriate microcode exception handler address, respec-
tively. The microsequencer 236 updates the micro-PC 232
normally by the size of a ROM instruction 247 to sequence
through microcode routines and alternatively to a target
address generated by the execution pipeline 112 in response
to execution of a control type microinstruction 126, such as a
branch instruction, to effect branches to non-sequential loca-
tions in the microcode ROM 234. The microcode ROM 234 is
manufactured within the semiconductor die of the micropro-
cessor 100.

In addition to the microinstructions 244 that implement a
simple ISA instruction 124 or a portion of a complex ISA
instruction 124, the simple instruction translator 204 also
generates ISA instruction information 255 that is written to
the instruction indirection register (IIR) 235. The ISA instruc-
tion information 255 stored in the IIR 235 includes informa-
tion about the ISA instruction 124 being translated, for
example, information identifying the source and destination
registers specified by the ISA instruction 124 and the form of
the ISA instruction 124, such as whether the ISA instruction
124 operates on an operand in memory or in an architectural
register 106 of the microprocessor 100. This enables the
microcode routines to be generic, i.e., without having to have
a different microcode routine for each different source and/or
destination architectural register 106. In particular, the simple
instruction translator 204 is knowledgeable of the register file
106, including which registers are shared registers 504, and
translates the register information provided in the x86 ISA
and ARM ISA instructions 124 to the appropriate register in
the register file 106 via the ISA instruction information 255.
The ISA instruction information 255 also includes a displace-
ment field, an immediate field, a constant field, rename infor-
mation for each source operand as well as for the microin-
struction 126 itself, information to indicate the first and last
microinstruction 126 in the sequence of microinstructions
126 that implement the ISA instruction 124, and other bits of
useful information gleaned from the decode of the ISA
instruction 124 by the hardware instruction translator 104.

The microtranslator 237 receives the ROM instructions
247 from the microcode ROM 234 and the contents of the IIR
235. In response, the microtranslator 237 generates imple-
menting microinstructions 246. The microtranslator 237
translates certain ROM instructions 247 into different
sequences of microinstructions 246 depending upon the
information received from the IIR 235, such as depending
upon the form of the ISA instruction 124 and the source
and/or destination architectural register 106 combinations
specified by them. In many cases, much of the ISA instruction
information 255 is merged with the ROM instruction 247 to
generate the implementing microinstructions 246. In one
embodiment, each ROM instruction 247 is approximately 40
bits wide and each microinstruction 246 is approximately 200
bits wide. In one embodiment, the microtranslator 237 is
capable of generating up to three microinstructions 246 from
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a ROM instruction 247. The microtranslator 237 comprises
Boolean logic gates that generate the implementing microin-
structions 246.

An advantage provided by the microtranslator 237 is that
the size of the microcode ROM 234 may be reduced since it
does not need to store the ISA instruction information 255
provided by the IIR 235 since the simple instruction translator
204 generates the ISA instruction information 255. Further-
more, the microcode ROM 234 routines may include fewer
conditional branch instructions because it does not need to
include a separate routine for each different ISA instruction
form and for each source and/or destination architectural
register 106 combination. For example, if the complex ISA
instruction 124 is a memory form, the simple instruction
translator 204 may generate a prolog of microinstructions 244
that includes microinstructions 244 to load the source oper-
and from memory into a temporary register 106, and the
microtranslator 237 may generate a microinstruction 246 to
store the result from the temporary register to memory;
whereas, if the complex ISA instruction 124 is a register form,
the prolog may move the source operand from the source
register specified by the ISA instruction 124 to the temporary
register 106, and the microtranslator 237 may generate a
microinstruction 246 to move the result from a temporary
register to the architectural destination register 106 specified
by the IIR 235. In one embodiment, the microtranslator 237 is
similar in many respects to the microtranslator 237 described
in U.S. patent application Ser. No. 12/766,244, filed on Apr.
23, 2010, which is hereby incorporated by reference in its
entirety for all purposes, but which is modified to translate
ARM ISA instructions 124 in addition to x86 ISA instruc-
tions 124.

It is noted that the micro-PC 232 is distinct from the ARM
PC 116 and the x86 IP 118; that is, the micro-PC 232 does not
hold the address of ISA instructions 124, and the addresses
held in the micro-PC 232 are not within the system memory
address space. It is further noted that the microinstructions
246 are produced by the hardware instruction translator 104
and provided directly to the execution pipeline 112 for execu-
tion rather than being results 128 of the execution pipeline
112.

Referring now to FIG. 3, a block diagram illustrating in
more detail the instruction formatter 202 of FIG. 2 is shown.
The instruction formatter 202 receives a block of the x86 ISA
and ARM ISA instruction bytes 124 from the instruction
cache 102 of FIG. 1. By virtue of the variable length nature of
x86 ISA instructions, an x86 instruction 124 may begin in any
byte within a block of instruction bytes 124. The task of
determining the length and location of an x86 ISA instruction
within a cache block is further complicated by the fact that the
x86 IS A allows prefix bytes and the length may be affected by
current address length and operand length default values.
Furthermore, ARM ISA instructions are either 2-byte or
4-byte length instructions and are 2-byte or 4-byte aligned,
depending upon the current ARM instruction set state 322 and
the opcode of the ARM ISA instruction 124. Therefore, the
instruction formatter 202 extracts distinct x86 ISA and ARM
ISA instructions from the stream of instruction bytes 124
made up of the blocks received from the instruction cache
102. That is, the instruction formatter 202 formats the stream
of x86 ISA and ARM ISA instruction bytes, which greatly
simplifies the already difficult task of the simple instruction
translator 204 of FIG. 2 to decode and translate the ISA
instructions 124.

The instruction formatter 202 includes a pre-decoder 302
that pre-decodes the instruction bytes 124 as x86 instruction
bytes if the instruction mode indicator 132 indicates x86 and
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pre-decodes the instruction bytes 124 as ARM instruction
bytes if the instruction mode indicator 132 indicates ARM to
generate pre-decode information. An instruction byte queue
(IBQ) 304 receives the block of ISA instruction bytes 124 and
associated pre-decode information generated by the pre-de-
coder 302.

An array of length decoders and ripple logic 306 receives
the contents of the bottom entry of the IBQ 304, namely a
block of ISA instruction bytes 124 and associated pre-decode
information. The length decoders and ripple logic 306 also
receives the instruction mode indicator 132 and the ARM ISA
instruction set state 322. In one embodiment, the ARM ISA
instruction set state 322 comprises the J and T bits of the ARM
ISA CPSR register. In response to its inputs, the length decod-
ers and ripple logic 306 generates decode information includ-
ing the length of x86 and ARM instructions in the block of
ISA instruction bytes 124, x86 prefix information, and indi-
cators associated with each of the ISA instruction bytes 124
indicating whether the byte is the start byte of an ISA instruc-
tion 124, the end byte of an ISA instruction 124, and/or a valid
byte of an ISA instruction 124. A mux queue (MQ) 308
receives a block of the ISA instruction bytes 124, its associ-
ated pre-decode information generated by the pre-decoder
302, and the associated decode information generated by the
length decoders and ripple logic 306.

Control logic (not shown) examines the contents of the
bottom MQ 308 entries and controls muxes 312 to extract
distinct, or formatted, ISA instructions and associated pre-
decode and decode information, which are provided to a
formatted instruction queue (FIQ) 314. The FIQ 314 buffers
the formatted ISA instructions 242 and related information
for provision to the simple instruction translator 204 of FIG.
2. In one embodiment, the muxes 312 extract up to three
formatted ISA instructions and related information per clock
cycle.

In one embodiment, the instruction formatter 202 is similar
in many ways to the XIBQ, instruction formatter, and FIQ
collectively as described in U.S. patent application Ser. Nos.
12/571,997; 12/572,002; 12/572,045; 12/572,024; 12/572,
052;12/572,058, each filed on Oct. 1, 2009, which are hereby
incorporated by reference herein for all purposes. However,
the XIBQ, instruction formatter, and FIQ of the above Patent
Applications are modified to format ARM ISA instructions
124 in addition to x86 ISA instructions 124. The length
decoder 306 is modified to decode ARM ISA instructions 124
to generate their length and start, end, and valid byte indica-
tors. In particular, if the instruction mode indicator 132 indi-
cates ARM IS A, the length decoder 306 examines the current
ARM instruction set state 322 and the opcode of the ARM
ISA instruction 124 to determine whether the ARM instruc-
tion 124 is a 2-byte or 4-byte length instruction. In one
embodiment, the length decoder 306 includes separate length
decoders for generating the length of x86 ISA instructions
124 and for generating the length of ARM ISA instructions
124, and tri-state outputs of the separate length decoders are
wire-ORed together for provision to the ripple logic 306. In
one embodiment, the formatted instruction queue (FIQ) 314
comprises separate queues for holding separate portions of
the formatted instructions 242. In one embodiment, the
instruction formatter 202 provides the simple instruction
translator 204 up to three formatted ISA instructions 242 per
clock cycle.

Referring now to FIG. 4, a block diagram illustrating in
more detail the execution pipeline 112 of FIG. 1is shown. The
execution pipeline 112 is coupled to receive the implement-
ing microinstructions 126 directly from the hardware instruc-
tion translator 104 of FIG. 2. The execution pipeline 112
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includes a microinstruction queue 401 that receives the
microinstructions 126; a register allocation table (RAT) 402
that receives the microinstructions from the microinstruction
queue 401; an instruction dispatcher 404 coupled to the RAT
402; reservation stations 406 coupled to the instruction dis-
patcher 404; an instruction issue unit 408 coupled to the
reservation stations 406; a reorder buffer (ROB) 422 coupled
to the RAT 402, instruction dispatcher 404, and reservation
stations 406, and execution units 424 coupled to the reserva-
tion stations 406, instruction issue unit 408, and ROB 422.
The RAT 402 and execution units 424 receive the instruction
mode indicator 132.

The microinstruction queue 401 operates as a buffer in
circumstances where the rate at which the hardware instruc-
tion translator 104 generates the implementing microinstruc-
tions 126 differs from the rate at which the execution pipeline
112 executes them. In one embodiment, the microinstruction
queue 401 comprises an M-to-N compressible microinstruc-
tion queue that enables the execution pipeline 112 to receive
up to M (in one embodiment M is six) microinstructions 126
from the hardware instruction translator 104 in a given clock
cycle and yet store the received microinstructions 126 in an
N-wide queue (in one embodiment N is three) structure in
order to provide up to N microinstructions 126 per clock cycle
to the RAT 402, which is capable of processing up to N
microinstructions 126 per clock cycle. The microinstruction
queue 401 is compressible in that it does not leave holes
among the entries of the queue, but instead sequentially fills
empty entries of the queue with the microinstructions 126 as
they are received from the hardware instruction translator 104
regardless of the particular clock cycles in which the micro-
instructions 126 are received. This advantageously enables
high utilization of the execution units 424 (of FIG. 4) in order
to achieve high instruction throughput while providing
advantages over a non-compressible M-wide or N-wide
instruction queue. More specifically, a non-compressible
N-wide queue would require the hardware instruction trans-
lator 104, in particular the simple instruction translator 204,
to re-translate in a subsequent clock cycle one or more ISA
instructions 124 that it already translated in a previous clock
cycle because the non-compressible N-wide queue could not
receive more than N microinstructions 126 per clock cycle,
and the re-translation wastes power; whereas, a non-com-
pressible M-wide queue, although not requiring the simple
instruction translator 204 to re-translate, would create holes
among the queue entries, which is wasteful and would require
more rows of entries and thus a larger and more power-
consuming queue in order to accomplish comparable bufter-
ing capability.

The RAT 402 receives the microinstructions 126 from the
microinstruction queue 401 and generates dependency infor-
mation regarding the pending microinstructions 126 within
the microprocessor 100 and performs register renaming to
increase the microinstruction parallelism to take advantage of
the superscalar, out-of-order execution ability of the execu-
tion pipeline 112. If the ISA instructions 124 indicates x86,
then the RAT 402 generates the dependency information and
performs the register renaming with respect to the x86 ISA
registers 106 of the microprocessor 100; whereas, if the ISA
instructions 124 indicates ARM, then the RAT 402 generates
the dependency information and performs the register renam-
ing with respect to the ARM ISA registers 106 of the micro-
processor 100; however, as mentioned above, some of the
registers 106 may be shared by the x86 ISA and ARM ISA.
The RAT 402 also allocates an entry in the ROB 422 for each
microinstruction 126 in program order so that the ROB 422
can retire the microinstructions 126 and their associated x86
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ISA and ARM ISA instructions 124 in program order, even
though the microinstructions 126 may execute out of program
order with respect to the x86 ISA and ARM ISA instructions
124 they implement. The ROB 422 comprises a circular
queue of entries, each for storing information related to a
pending microinstruction 126. The information includes,
among other things, microinstruction 126 execution status, a
tag that identifies the x86 or ARM ISA instruction 124 from
which the microinstruction 126 was translated, and storage
for storing the results of the microinstruction 126.

The instruction dispatcher 404 receives the register-re-
named microinstructions 126 and dependency information
from the RAT 402 and, based on the type of instruction and
availability of the execution units 424, dispatches the micro-
instructions 126 and their associated dependency information
to the reservation station 406 associated with the appropriate
execution unit 424 that will execute the microinstruction 126.

The instruction issue unit 408, for each microinstruction
126 waiting in a reservation station 406, detects that the
associated execution unit 424 is available and the dependen-
cies are satisfied (e.g., the source operands are available) and
issues the microinstruction 126 to the execution unit 424 for
execution. As mentioned, the instruction issue unit 408 can
issue the microinstructions 126 for execution out of program
order and in a superscalar fashion.

In one embodiment, the execution units 424 include inte-
ger/branch units 412, media units 414, load/store units 416,
and floating point units 418. The execution units 424 execute
the microinstructions 126 to generate results 128 that are
provided to the ROB 422. Although the execution units 424
are largely agnostic of whether the microinstructions 126 they
are executing were translated from an x86 or ARM ISA
instruction 124, the execution units 424 use the instruction
mode indicator 132 and environment mode indicator 136 to
execute a relatively small subset of the microinstructions 126.
For example, the execution pipeline 112 handles the genera-
tion of flags slightly differently based on whether the instruc-
tion mode indicator 132 indicates the x86 ISA or the ARM
ISA and updates the x86 EFLLAGS register or ARM condition
code flags in the PSR depending upon whether the instruction
mode indicator 132 indicates the x86 ISA or the ARM ISA.
For another example, the execution pipeline 112 samples the
instruction mode indicator 132 to decide whether to update
the x86 IP 118 or the ARM PC 116, or common instruction
address register, and whether to use x86 or ARM semantics to
do so. Once a microinstruction 126 becomes the oldest com-
pleted microinstruction 126 in the microprocessor 100 (i.e., at
the head of the ROB 422 queue and having a completed
status) and all other microinstructions 126 that implement the
associated ISA instruction 124 are complete, the ROB 422
retires the ISA instruction 124 and frees up the entries asso-
ciated with the implementing microinstructions 126. In one
embodiment, the microprocessor 100 can retire up to three
ISA instructions 124 per clock cycle. Advantageously, the
execution pipeline 112 is a high performance, general pur-
pose execution engine that executes microinstructions 126 of
the microarchitecture of the microprocessor 100 that supports
both x86 ISA and ARM ISA instructions 124.

Referring now to FIG. 5, a block diagram illustrating in
more detail the register file 106 of F1G. 1 is shown. Preferably
register file 106 is implemented as separate physical blocks of
registers. In one embodiment, the general purpose registers
are implemented in one physical register file having a plural-
ity of read ports and write ports; whereas, other registers may
be physically located apart from the general purpose register
file and proximate functional blocks which access them and
may have fewer read/write ports than the general purpose
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register file. In one embodiment, some of the non-general
purpose registers, particularly those that do not directly con-
trol hardware of the microprocessor 100 but simply store
values used by microcode 234 (e.g., some x86 MSR or ARM
coprocessor registers), are implemented in a private random
access memory (PRAM) accessible by the microcode 234 but
invisible to the x86 ISA and ARM ISA programmer, i.e., not
within the ISA system memory address space.

Broadly speaking, the register file 106 is separated logi-
cally into three categories, as shown in FIG. 5, namely the
ARM-specific registers 502, the x86-specific register 504,
and the shared registers 506. In one embodiment, the shared
registers 506 include fifteen 32-bit registers that are shared by
the ARM ISA registers RO through R14 and the x86 ISA EAX
through R14D registers as well as sixteen 128-bit registers
shared by the x86 ISA XMMO through XMM15 registers and
the ARM ISA Advanced SIMD (Neon) registers, a portion of
which are also overlapped by the thirty-two 32-bit ARM
VFPv3 floating-point registers. As mentioned above with
respect to FIG. 1, the sharing of the general purpose registers
implies that a value written to a shared register by an x86 ISA
instruction 124 will be seen by an ARM ISA instruction 124
that subsequently reads the shared register, and vice versa.
This advantageously enables x86 ISA and ARM ISA routines
to communicate with one another through registers. Addition-
ally, as mentioned above, certain bits of architectural control
registers of the x86 ISA and ARM ISA are also instantiated as
shared registers 506. As mentioned above, in one embodi-
ment, the x86 MSRs may be accessed by ARM ISA instruc-
tions 124 via an implementation-defined coprocessor regis-
ter, and are thus shared by the x86 ISA and ARM ISA. The
shared registers 506 may also include non-architectural reg-
isters, for example non-architectural equivalents of the con-
dition flags, that are also renamed by the RAT 402. The
hardware instruction translator 104 is aware of which regis-
ters are shared by the x86 ISA and ARM ISA so that it may
generate the implementing microinstructions 126 that access
the correct registers.

The ARM-specific registers 502 include the other registers
defined by the ARM ISA that are not included in the shared
registers 506, and the x86-specific registers 504 include the
other registers defined by the x86 ISA that are not included in
the shared registers 506. Examples of the ARM-specific reg-
isters 502 include the ARM PC 116, CPSR, SCTRL, FPSCR,
CPACR, coprocessor registers, banked general purpose reg-
isters and SPSRs of the various exception modes, and so
forth. The foregoing is not intended as an exhaustive list of the
ARM-specific registers 502, but is merely provided as an
illustrative example. Examples of the x86-specific registers
504 include the x86 EIP 118, EFLAGS, R15D, upper 32 bits
of the 64-bit RO-R15 registers (i.e., the portion not in the
shared registers 506), segment registers (SS, CS, DS, ES, FS,
GS), x87 FPU registers, MMX registers, control registers
(e.g., CRO-CR3, CR8), and so forth. The foregoing is not
intended as an exhaustive list of the x86-specific registers
504, but is merely provided as an illustrative example.

In one embodiment, the microprocessor 100 includes new
implementation-defined ARM coprocessor registers that may
be accessed when the instruction mode indicator 132 indi-
cates the ARM ISA in order to perform x86 ISA-related
operations, including but not limited to: the ability to reset the
microprocessor 100 to an x86 ISA processor (reset-to-x86
instruction); the ability to initialize the x86-specific state of
the microprocessor 100, switch the instruction mode indica-
tor 132 to x86, and begin fetching x86 instructions 124 at a
specified x86 target address (launch-x86 instruction); the
ability to access the global configuration register discussed
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above; the ability to access x86-specific registers (e.g.,
EFLAGS), in which the x86 register to be accessed is identi-
fied in the ARM RO register, power management (e.g., P-state
and C-state transitions), processor bus functions (e.g., [/O
cycles), interrupt controller access, and encryption accelera-
tion functionality access, as discussed above. Furthermore, in
one embodiment, the microprocessor 100 includes new x86
non-architectural MSRs that may be accessed when the
instruction mode indicator 132 indicates the x86 ISA in order
to perform ARM ISA-related operations, including but not
limited to: the ability to reset the microprocessor 100 to an
ARM ISA processor (reset-to-ARM instruction); the ability
to initialize the ARM-specific state of the microprocessor
100, switch the instruction mode indicator 132 to ARM, and
begin fetching ARM instructions 124 at a specified ARM
target address (launch-ARM instruction); the ability to access
the global configuration register discussed above; the ability
to access ARM-specific registers (e.g., the CPSR), in which
the ARM register to be accessed is identified in the EAX
register.

Referring now to FIG. 6, comprising FIGS. 6A and 6B, a
flowchart illustrating operation of the microprocessor 100 of
FIG. 1 is shown. Flow begins at block 602.

At block 602, the microprocessor 100 is reset. The reset
may be signaled on the reset input to the microprocessor 100.
Additionally, in an embodiment in which the processor bus is
an x86 style processor bus, the reset may be signaled by an
x86-style INIT. In response to the reset, the reset routines in
the microcode 234 are invoked. The reset microcode: (1)
initializes the x86-specific state 504 to the default values
specified by the x86 ISA; (2) initializes the ARM-specific
state 502 to the default values specified by the ARM ISA; (3)
initializes the non-ISA-specific state of the microprocessor
100 to the default values specified by the microprocessor 100
manufacturer; (4) initializes the shared ISA state 506, e.g., the
GPRs, to the default values specified by the x86 ISA; and (5)
sets the instruction mode indicator 132 and environment
mode indicator 136 to indicate the x86 ISA. In an alternate
embodiment, instead of actions (4) and (5) above, the reset
microcode initializes the shared ISA state 506 to the default
values specified by the ARM ISA and sets the instruction
mode indicator 132 and environment mode indicator 136 to
indicate the ARM ISA. In such an embodiment, the actions at
blocks 638 and 642 would not need to be performed, and
before block 614 the reset microcode would initialize the
shared ISA state 506 to the default values specified by the x86
ISA and set the instruction mode indicator 132 and environ-
ment mode indicator 136 to indicate the x86 ISA. Flow pro-
ceeds to block 604.

At block 604, the reset microcode determines whether the
microprocessor 100 is configured to boot as an x86 processor
or as an ARM processor. In one embodiment, as described
above, the default ISA boot mode is hardcoded in microcode
but may be modified by blowing a configuration fuse and/or
by a microcode patch. In another embodiment, the default
ISA boot mode is provided as an external input to the micro-
processor 100, such as an external input pin. Flow proceeds to
decision block 606. At decision block 606, if the default ISA
boot mode is x86, flow proceeds to block 614; whereas, if the
default ISA boot mode is ARM, flow proceeds to block 638.

Atblock 614, the reset microcode causes the microproces-
sor 100 to begin fetching x86 instructions 124 at the reset
vector address specified by the x86 ISA. Flow proceeds to
block 616.
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Atblock 616, the x86 system software, e.g., BIOS, config-
ures the microprocessor 100 using, for example, x86 ISA
RDMSR and WRMSR instructions 124. Flow proceeds to
block 618.

At block 618, the x86 system software does a reset-to-
ARM instruction 124. The reset-to-ARM instruction causes
the microprocessor 100 to reset and to come out of the reset as
an ARM processor. However, because no x86-specific state
504 and no non-ISA-specific configuration state is changed
by the reset-to-ARM instruction 126, it advantageously
enables x86 system firmware to perform the initial configu-
ration of the microprocessor 100 and then reboot the micro-
processor 100 as an ARM processor while keeping intact the
non-ARM configuration of the microprocessor 100 per-
formed by the x86 system software. This enables “thin”
micro-boot code to boot an ARM operating system without
requiring the micro-boot code to know the complexities of
how to configure the microprocessor 100. In one embodi-
ment, the reset-to-ARM instruction is an x86 WRMSR
instruction to a new non-architectural MSR. Flow proceeds to
block 622.

At block 622, the simple instruction translator 204 traps to
the reset microcode in response to the complex reset-to-ARM
instruction 124. The reset microcode initializes the ARM-
specific state 502 to the default values specified by the ARM
ISA. However, the reset microcode does not modify the non-
ISA-specific state of the microprocessor 100, which advan-
tageously preserves the configuration performed at block
616. Additionally, the reset microcode initializes the shared
IS A state 506 to the default values specified by the ARM ISA.
Finally, the reset microcode sets the instruction mode indica-
tor 132 and environment mode indicator 136 to indicate the
ARM ISA. Flow proceeds to block 624.

Atblock 624, the reset microcode causes the microproces-
sor 100 to begin fetching ARM instructions 124 at the address
specified in the x86 ISA EDX:EAX registers. Flow ends at
block 624.

Atblock 638, the reset microcode initializes the shared ISA
state 506, e.g., the GPRs, to the default values specified by the
ARM ISA. Flow proceeds to block 642.

Atblock 642, the reset microcode sets the instruction mode
indicator 132 and environment mode indicator 136 to indicate
the ARM ISA. Flow proceeds to block 644.

At block 644, the reset microcode causes the microproces-
sor 100 to begin fetching ARM instructions 124 at the reset
vector address specified by the ARM ISA. The ARM ISA
defines two reset vector addresses selected by an input. In one
embodiment, the microprocessor 100 includes an external
input to select between the two ARM ISA-defined reset vector
addresses. In another embodiment, the microcode 234
includes a default selection between the two ARM ISA-de-
fined reset vector addresses, which may be modified by a
blown fuse and/or microcode patch. Flow proceeds to block
646.

At block 646, the ARM system software configures the
microprocessor 100 using, for example, ARM ISA MCR and
MRC instructions 124. Flow proceeds to block 648.

At block 648, the ARM system software does a reset-to-
x86 instruction 124. The reset-to-x86 instruction causes the
microprocessor 100 to reset and to come out of the reset as an
x86 processor. However, because no ARM-specific state 502
and no non-IS A-specific configuration state is changed by the
reset-t0-x86 instruction 126, it advantageously enables ARM
system firmware to perform the initial configuration of the
microprocessor 100 and then reboot the microprocessor 100
as an x86 processor while keeping intact the non-x86 con-
figuration of the microprocessor 100 performed by the ARM
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system software. This enables “thin” micro-boot code to boot
an x86 operating system without requiring the micro-boot
code to know the complexities of how to configure the micro-
processor 100. In one embodiment, the reset-to-x86 instruc-
tion is an ARM MRC/MRCC instruction to a new implemen-
tation-defined coprocessor register. Flow proceeds to block
652.

At block 652, the simple instruction translator 204 traps to
the reset microcode in response to the complex reset-t0-x86
instruction 124. The reset microcode initializes the x86-spe-
cific state 504 to the default values specified by the x86 ISA.
However, the reset microcode does not modity the non-ISA-
specific state of the microprocessor 100, which advanta-
geously preserves the configuration performed at block 646.
Additionally, the reset microcode initializes the shared ISA
state 506 to the default values specified by the x86 ISA.
Finally, the reset microcode sets the instruction mode indica-
tor 132 and environment mode indicator 136 to indicate the
x86 ISA. Flow proceeds to block 654.

Atblock 654, the reset microcode causes the microproces-
sor 100 to begin fetching x86 instructions 124 at the address
specified in the ARM ISA R1:ROregisters. Flow ends at block
654.

Referring now to FIG. 7, a block diagram illustrating a
dual-core microprocessor 700 according to the present inven-
tion is shown. The dual-core microprocessor 700 includes
two processing cores 100 in which each core 100 includes the
elements of the microprocessor 100 of FIG. 1 such that it can
perform both x86 ISA and ARM ISA machine language pro-
grams. The cores 100 may be configured such that both cores
100 are running x86 ISA programs, both cores 100 are run-
ning ARM ISA programs, or one core 100 is running x86 ISA
programs while the other core 100 is running ARM ISA
programs, and the mix between these three configurations
may change dynamically during operation of the micropro-
cessor 700. As discussed above with respect to FIG. 6, each
core 100 has a default value for its instruction mode indicator
132 and environment mode indicator 136, which may be
inverted by a fuse and/or microcode patch, such that each core
100 may individually come out of reset as an x86 or an ARM
processor. Although the embodiment of FIG. 7 includes two
cores 100, in other embodiments the microprocessor 700
includes more than two cores 100, each capable of running
both x86 ISA and ARM ISA machine language programs.

Referring now to FIG. 8, a block diagram illustrating a
microprocessor 100 that can perform x86 ISA and ARM ISA
machine language programs according to an alternate
embodiment of the present invention is shown. The micro-
processor 100 of FIG. 8 is similar to the microprocessor 100
of FIG. 1 and like-numbered elements are similar. However,
the microprocessor 100 of FIG. 8 also includes a microin-
struction cache 892. The microinstruction cache 892 caches
microinstructions 126 generated by the hardware instruction
translator 104 that are provided directly to the execution
pipeline 112. The microinstruction cache 892 is indexed by
the fetch address 134 generated by the instruction fetch unit
114. Ifthe fetch address 134 hits in the microinstruction cache
892, then a mux (not shown) within the execution pipeline
112 selects the microinstructions 126 from the microinstruc-
tion cache 892 rather than from the hardware instruction
translator 104; otherwise, the mux selects the microinstruc-
tions 126 provided directly from the hardware instruction
translator 104. The operation of a microinstruction cache,
also commonly referred to as a trace cache, is well-known in
the art of microprocessor design. An advantage provided by
the microinstruction cache 892 is that the time required to
fetch the microinstructions 126 from the microinstruction
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cache 892 is typically less than the time required to fetch the
ISA instructions 124 from the instruction cache 102 and
translate them into the microinstructions 126 by the hardware
instruction translator 104. In the embodiment of FIG. 8, as the
microprocessor 100 runs an x86 or ARM ISA machine lan-
guage program, the hardware instruction translator 104 may
not need to perform the hardware translation each time it
performs an x86 or ARM ISA instruction 124, namely if the
implementing microinstructions 126 are already present in
the microinstruction cache 892.

Advantageously, embodiments of a microprocessor are
described herein that can run both x86 ISA and ARM ISA
machine language programs by including a hardware instruc-
tion translator that translates both x86 ISA and ARM ISA
instructions into microinstructions of a microinstruction set
distinct from the x86 ISA and ARM ISA instruction sets,
which microinstructions are executable by a common execu-
tion pipeline of the microprocessor to which the implement-
ing microinstructions are provided. An advantage of embodi-
ments of the microprocessor described herein is that, by
synergistically utilizing the largely ISA-agnostic execution
pipeline to execute microinstructions that are hardware trans-
lated from both x86 ISA and ARM ISA instructions, the
design and manufacture of the microprocessor may require
fewer resources than two separately designed and manufac-
tured microprocessors, i.e., one that can perform x86 ISA
machine language programs and one that can perform ARM
ISA machine language programs. Additionally, embodiments
of the microprocessor, particularly those which employ a
superscalar out-of-order execution pipeline, potentially pro-
vide a higher performance ARM ISA processor than currently
exists. Furthermore, embodiments of the microprocessor
potentially provide higher x86 and ARM performance than a
system that employs a software translator. Finally, the micro-
processor may be included in a system on which both x86 and
ARM machine language programs can be run concurrently
with high performance due to its ability to concurrently run
both x86 ISA and ARM ISA machine language programs.
Conditional ALU Instructions

It may be desirable for a microprocessor to include in its
instruction set the ability for instructions to be conditionally
executed. That is, the instruction may specify a condition
(e.g., zero, or negative, or greater than) which if satisfied by
condition flags is executed by the microprocessor and which
if not satisfied by condition flags is not executed. As men-
tioned above, the ARM ISA provides this capability, not just
for branch instructions, but for a large portion of the instruc-
tions of its instruction set. The conditionally executed instruc-
tions may specify source operands supplied from general
purpose registers to generate a result to be written to a general
purpose destination register. U.S. Pat. No. 7,647,480, whose
assignee is ARM Limited, of Cambridge, Great Britain,
describes a data processing apparatus that handles condi-
tional instructions. Generally speaking, a pipelined process-
ing unit executes a conditional instruction to produce a result
data value which represents either the result of the computa-
tion specified by the conditional instruction if the condition is
satisfied, or the current data value stored in the destination
register if the condition is not satisfied. Two possible solu-
tions for accomplishing this are described.

In the first solution, each conditional instruction in the
instruction set is constrained to specify a register that is both
a source register and a destination register. This way, the
conditional instruction only consumes two read ports of the
register file, namely to supply the current destination register
value as a source operand and to supply the other source
operand. Thus, the first solution reduces the minimum num-
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ber of register file read ports required to support execution of
the conditional instruction by the pipelined processing unit.

A second solution removes the constraint of the first solu-
tion such that conditional instructions could specify sepa-
rately the destination register and the source registers. The
second solution requires an additional read port on the regis-
ter file in order to be able to read the required operand data
values (i.e., the source operands and the destination operand
from the register file) for the conditional instruction in a
single cycle. The first solution rather than the second solution
is the subject of the invention of U.S. Pat. No. 7,647,480
because the second solution has the disadvantages of not only
requiring the cost of an additional read port for the register
file, but also requires a greater number of bits to specify the
conditional instruction and increased complexity of the data
path. More specifically, the data path would need logic to be
provided for the three input paths from the register file and
would potentially need forwarding logic to couple into each
of the three paths.

Advantageously, embodiments are described herein that
enable the conditional instructions to specify source operand
registers that are distinct from the destination register and
which does not require an additional read port on the register
file. Generally speaking, according to embodiments
described herein, the hardware instruction translator 104 of
the microprocessor 100 of FIG. 1 translates a conditionally
executed ISA instruction 124 into a sequence of one or more
microinstructions 126 for execution by the execution pipeline
112. The execution unit 424 that executes the last microin-
struction 126 of the sequence receives the original value of the
destination register specified by the conditional instruction
124 along with a means to determine whether the condition is
satisfied. A previous microinstruction 126, or the last micro-
instruction 126 itself, performs an operation on the source
operands to generate a result. If the condition is not satisfied,
the execution unit 424 that executes the last microinstruction
126 of the sequence writes the original value back to the
destination register rather than writing the result value to the
destination register.

As used herein, a conditional ALU instruction is an ISA
instruction 124 that instructs the microprocessor 100 to per-
form an arithmetic or logical operation (ALU operation) on
one or more source operands to generate a result and to write
the result to a destination register. Other types of conditional
instructions 124 may be supported in the ISA instruction sets
of the microprocessor 100, such as conditional branch
instructions 124 or conditional load/store instructions 124,
which are distinguished from the conditional ALU instruction
124 type.

The number and types of microinstructions 126 in the
sequence emitted by the hardware instruction translator 104
in response to encountering the conditional ALU instruction
124 is primarily a function of two characteristics. The first
characteristic is whether the conditional ALU instruction 124
specifies that one of the source operands has a pre-shift opera-
tion applied to it. In one embodiment, the pre-shift operations
include those described in the ARM Architecture Reference
Manual at pages A8-10 through A8-12, for example. If the
conditional ALU instruction 124 specifies a pre-shift opera-
tion, the hardware instruction translator 104 generates a shift
microinstruction 126 (denoted SHF in FIG. 10 et seq.) as the
first microinstruction 126 in the sequence. The shift microin-
struction 126 performs the pre-shift to generate a shifted
result that is written to a temporary register for potential use
by a subsequent microinstruction 126 in the sequence. The
second characteristic is whether the destination register
specified by the conditional ALU instruction 124 is also one
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of'the source operand registers. If so, the hardware instruction
translator 104 makes an optimization to translate the condi-
tional ALU instruction 124 into one less microinstruction 126
than a version of the conditional ALU instruction 124 that
does not specify the destination register as one of the source
operand registers, as described primarily with respect to
FIGS. 21 through 28.

Furthermore, the conditional ALU instruction 124 speci-
fies a condition that must be satisfied by the architectural
condition flags in order for the conditional ALU instruction
124 to be performed by the microprocessor 100. The condi-
tional ALU instruction 124 may specify that the architectural
condition flags are to be updated based on the result of the
ALU operation and/or a pre-shift-generated carry flag. How-
ever, the architectural condition flags are not to be updated if
the condition is not satisfied. Accomplishing this is compli-
cated by the fact that the hardware instruction translator 104
translates the conditional ALU instruction 124 into a
sequence of microinstructions 126. More specifically, if the
condition is satisfied, at least one of the microinstructions 126
must write the new condition flag values; however, the old
values of the condition flags may be needed by microinstruc-
tions 126 in the sequence to determine whether the condition
specified by the conditional ALU instruction 124 is satisfied
and/or to perform the ALU operation. Advantageously,
embodiments are described in which the microprocessor 100
employs techniques to ensure that it does not update the
condition flags ifthe condition is not satisfied, and yet updates
the condition flags with the correct values if the condition is
satisfied, including with the pre-shift-generated carry flag
value.

Embodiments of the microprocessor 100 are described in
which the register file 106 of FIG. 1 that holds the general
purpose registers includes only enough read ports for the
register file 106 to provide at most two source operands to the
execution units 424 that execute the microinstructions 126
that implement the conditional ALU instructions 124. As
described above with respect to FIG. 1, embodiments are
contemplated in which the microprocessor 100 is an enhance-
ment of' a commercially available microprocessor. The regis-
ter file that holds the general purpose registers of the com-
mercially available microprocessor includes only enough
read ports for the register file to provide at most two source
operands to the execution units that execute the microinstruc-
tions 126 that are described herein that implement the condi-
tional ALU instructions 124. Thus, the embodiments
described herein are particularly advantageous for synergistic
adaptation of the commercially available microprocessor
microarchitecture. As also described above with respect to
FIG. 1, the commercially available microprocessor was origi-
nally designed for the x86 ISA in which conditional execution
of instructions is not a dominant feature and, because it is
accumulator-based, generally requires one of the source oper-
ands to be the destination operand, and therefore does not
seem to justify the additional read port.

An advantage of the embodiments described herein is that
although in some cases there is a two clock cycle execution
latency associated with the execution of two microinstruc-
tions into which the conditional ALU instruction 124 is trans-
lated, and in some cases there is a three clock cycle execution
latency associated with the execution of three microinstruc-
tions into which the conditional ALU instruction 124 is trans-
lated, the operations performed by each of the microinstruc-
tions is relatively simple, which lends itself to a pipelined
implementation that is capable of supporting relatively high
core clock rates.
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Although embodiments are described in which the micro-
processor 100 is capable of performing instructions of both
the ARM ISA and the x86 ISA, the embodiments are not so
limited. Rather, embodiments are contemplated in which the
microprocessor performs instructions of only a single ISA.
Furthermore, although embodiments are described in which
the microprocessor 100 translates ARM ISA conditional
ALU instructions into microinstructions 126 as described
herein, embodiments are contemplated in which the micro-
processor performs instructions of an ISA other than the
ARM but which includes conditional ALU instructions in its
instruction set.

Referring now to FIG. 9, a block a diagram illustrating in
more detail portions of the microprocessor 100 of FIG. 1 is
shown. The microprocessor 100 includes an architectural
condition flags register 926 of the register files 106 of FIG. 1,
and the execution units 424 and the ROB 422 of FIG. 4. The
condition flags register 926 stores the architectural condition
flags. In one embodiment, when the instruction mode indica-
tor 132 indicates the ARM ISA, the condition flags register
926 is storing values according to the semantics of the ARM
ISA condition flags, and when the instruction mode indicator
132 indicates the x86 ISA, the condition flags register 926 is
storing values according to the semantics of the x86 ISA
condition flags, i.e., the x86 EFLAGS. As described above
with respect to FIG. 5, preferably the register file 106 is
implemented as separate physical blocks of registers; in par-
ticular, the condition flags register 926 may be implemented
as a physical register file separate from, for example, the
physical register file for the general purpose registers. Thus,
even though the condition flags are provided to the execution
units 424 for execution of the microinstructions 126, as dis-
cussed below, the read ports of the condition flags register file
may be distinct from the read ports of the general purpose
register file.

The condition flags register 926 outputs its condition flags
value to one data input of a three-input mux 922. The mux 922
also receives on a second data input the condition flag results
from the appropriate entry of the ROB 422. The mux 922 also
receives on a third data input condition flag results from a flag
bus 928. The mux 922 selects the appropriate data input to
provide as an output 924 to the execution unit 424 to execute
a microinstruction 126 that reads the condition flags, as dis-
cussed in more detail below. Although a single flag bus 928 is
described, according to one embodiment, each execution unit
424 that is capable of generating condition flags has its own
flag bus 928, and each execution unit 424 capable of reading
the condition flags has its own condition flag input 924. Thus,
the various execution units 424 are enabled to concurrently
execute different microinstructions 126 that read and/or write
the condition flags.

The flag bus 928, which is a portion of the result bus 128 of
FIG. 1, conveys condition flag results that are output by the
execution units 424. The condition flag results are written to
the ROB 422, more particularly to the entry in the ROB 422
allocated to the microinstruction 126 being executed by the
execution unit 424 executing the microinstruction 126 and
whose results are conveyed on the flag bus 928. The condition
flag results are also forwarded by the flag bus 928 to the third
data input of the mux 922.

Also shown in FIG. 9 is a block diagram illustrating the
condition flag values output on the flag bus 928 by the execu-
tion units 424 and the condition flag values 924 received by
the execution units 424 from the mux 922. The condition flag
values 928/924 include ISA condition flags 902, a condition
satisfied (SAT) bit 904, a pre-shift carry (PSC) bit 906, and a
use shift carry (USE) bit 908. When the instruction mode
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indicator 132 indicates the ARM IS A, the ISA condition flags
902 include the ARM carry flag (C), zero flag (Z), overflow
flag (V), and negative flag (N). When the instruction mode
indicator 132 indicates the x86 ISA, the ISA condition flags
902 include the x86 EFLLAGS carry flag (CF), zero flag (ZF),
overflow flag (OF), sign flag (SF), parity flag (PF) and auxil-
iary flag (AF). The condition flags register 926 includes stor-
age for the ISA condition flags 902, SAT bit 904, PSC bit 906,
and USE bit 908. In one embodiment, the condition flags
register 926 shares storage for the x86 ISA and ARM ISA
carry flag, zero flag, overflow flag, and negative/sign flag.

Each microinstruction 126 indicates, in addition to its basic
operation (e.g., add, load/store, shift, Boolean AND, branch),
whether the microinstruction 126 is to perform one or more of
three additional operations: (1) read the condition flags 926
(denoted RDFLAGS in FIG. 10 et seq.), (2) write the condi-
tion flags 926 (denoted WRFLAGS in FIG. 10 et seq.), and (3)
generate a carry flag value and write it to the PSC bit 906 of
the condition flags 926 (denoted WRCARRY in FIG. 10 et
seq.). In one embodiment, the microinstruction 126 includes
respective bits to indicate the three additional operations. In
another embodiment, the microinstruction 126 indicates the
three additional operations via the opcode of the microin-
struction 126; that is, alternative opcodes exist for the micro-
instruction 126 types that are capable of performing one or
more of the three additional operations.

Ifan execution unit 424 executes a conditional ALU micro-
instruction 126 (denoted variously ALUOP CC, CUALUOP
CC, NCUALUOP CC in FIG. 10 et seq.) that instructs it to
write the condition flags 926 (denoted by WRFLAGS) and the
condition flags 924 read by the execution unit 424 satisfy the
condition specified by the microinstruction 126, then the
execution unit 424 sets the SAT bit 904 to one; otherwise, the
execution unit 424 clears the SAT bit 904 to zero. To further
clarify, if an execution unit 424 executes any microinstruction
126 that instructs it to write the condition flags 926 and the
microinstruction 126 is other than a conditional ALU micro-
instruction 126, then the execution unit 424 clears the SAT bit
904 to zero. As discussed below, some conditional microin-
structions 126 specify a condition based on the ISA condition
flags 902 (denoted XMOV CC in FIG. 10 et seq.) and some
conditional microinstructions 126 specify a condition based
on the SAT bit 904 (denoted CMOV in FIG. 10 et seq.).

If an execution unit 424 executes a shift microinstruction
126 that instructs it to write the carry flag (denoted by
WRCARRY), then the execution unit 424 sets the USE bit
908 to one and writes to the PSC bit 906 the carry value
generated by the shift microinstruction 126; otherwise, the
execution unit 424 clears the USE bit 908 to zero. To further
clarify, if an execution unit 424 executes any microinstruction
126 that instructs it to write the condition flags 926 and the
microinstruction 126 is other than a shift microinstruction
126, then the execution unit 424 clears the USE bit 908 to
zero. The USE bit 908 is consumed by a subsequent condi-
tional ALU microinstruction 126 to determine whether to
update the architectural carry flag 902 with the PSC bit 906
value or with a carry flag value generated based on an AL U
operation performed by the conditional ALU microinstruc-
tion 126, as described more below. In an alternate embodi-
ment, described more below, the USE bit 908 does not exist
and instead the hardware instruction translator 104 translator
directly generates a functional equivalent of the USE bit 908
as an indicator within the conditional ALU microinstruction
126.

Referring now to FIG. 10, a flowchart illustrating operation
of the hardware instruction translator 104 of FIG. 1 to trans-
late conditional ALU instructions 124 according to the
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present invention is shown. Generally, FIG. 10 illustrates the
manner in which the hardware instruction translator 104
decodes the conditional ALU instruction 124 to determine its
type in order to translate it into the appropriate sequence of
microinstructions 126 for execution by the execution pipeline
112. More specifically, the hardware instruction translator
104 determines whether the conditional ALU instruction 124
updates the architectural condition flags 902, performs a pre-
shift on a source operand, uses the carry flag as an input to the
ALU operation, and whether the ALU operation is a carry-
updating or non-carry-updating operation, which as dis-
cussed in more detail below denotes whether the AL U opera-
tion updates only a subset of the architectural condition flags
902 or all of the architectural condition flags 902. Flow begins
at block 1002.

At block 1002, the hardware instruction translator 104
encounters a conditional AL U instruction 124, decodes it, and
translates it into the appropriate sequence of microinstruc-
tions 126 such as those described with respect to blocks 1024,
1026, 1034, 1036, 1044, 1054 and 1056. A conditional ALU
instruction 124 is an ISA instruction 124 that instructs the
microprocessor 100 to perform an arithmetic or logical opera-
tion (ALU operation) on one or more source operands to
generate a result and to write the result to a destination reg-
ister. Some types of the AL U operation specified by the con-
ditional ALU instruction 124 use the architectural carry flag
902 as input (e.g., add with carry), although most do not. The
conditional ALU instruction 124 also specifies a condition
with respect to the architectural condition flags 902 of the
ISA. If the architectural condition flags 902 satisfy the con-
dition specified, the microprocessor 100 performs the condi-
tional ALU instruction 124, i.e., performs the ALU operation
and writes the result to the destination register. Otherwise, the
microprocessor 100 treats the conditional ALU instruction
124 as a no-op instruction; more specifically, the micropro-
cessor 100 does not change the value in the destination reg-
ister. Additionally, the conditional AL U instruction 124 may
specify that the architectural condition flags 902 are to be
updated based on the result of the ALU operation, or the
conditional ALU instruction 124 may specity that the archi-
tectural condition flags 902 are not to be updated. However,
even if the conditional ALU instruction 124 specifies that the
architectural condition flags 902 are to be updated, if the
architectural condition flags 902 do not satisfy the condition
specified, then the microprocessor 100 does not change the
value in the architectural condition flags 902. Finally, the
conditional ALU instruction 124 may additionally specify
that one of the source operands of the ALU operation be
pre-shifted, as described in more detail herein, such as with
respect to block 1012. In one embodiment, the set of condi-
tional ALU instructions 124 translated by the hardware
instruction translator 104 are ARM ISA instructions. More
specifically, in one embodiment, the ARM ISA Data-process-
ing instructions and multiply instructions are translated by the
hardware instruction translator 104 as described with respect
to FIG. 10. In one embodiment, these include, but are not
limited to, the AND, EOR, SUB, RSB, ADD, ADC, SBC,
RSC, TST, TEQ, CMP, CMN, ORR, ORN, MOV, LSL, LSR,
ASR, RRX, ROR, BIC, MVN, MUL, MLA, and MLS
instructions. In each of blocks 1024, 1026, 1034, 1036, 1044,
1054 and 1056, for illustration purposes, the relevant type of
ARM ISA conditional ALU instruction 124 is shown on the
first line, and the microinstructions 126 into which the hard-
ware instruction translator 104 translates the conditional
ALU instruction 124 are shown on the following lines. The
“CC” suffix indicates that the instruction 124 is a conditional
instruction. Additionally, type of ALU operation is shown and
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illustrative examples of source and destination operands
specified. The programmer may specify a destination register
that happens to be the same as a register that provides one of
the source operands; in this situation, the hardware instruc-
tion translator 104 is configured to take advantage of this
situation and optimize the sequence of microinstructions 126
into which it translates the conditional ALU instruction 124,
which is described with respect to FIG. 21. Flow proceeds to
decision block 1004.

Atdecision block 1004, the hardware instruction translator
104 determines whether the conditional AL U instruction 124
specifies that the architectural condition flags 902 are to be
updated by the conditional ALU instruction 124. That is, in
some situations the programmer may choose a version of the
conditional ALU instruction 124 that updates the architec-
tural condition flags 902 based on the result of the ALU
operation, and in other situations the programmer may choose
a version of the conditional ALU instruction 124 that does not
update the architectural condition flags 902 regardless of the
result of the ALU operation. In the ARM ISA assembly lan-
guage, an “S” suffix to the instruction mnemonic indicates the
architectural condition flags 902 are to be updated, and this
convention is followed in FIG. 10 et seq. For example, block
1044 denotes the ARM ISA conditional ALU instruction 124
as “ALUOP S” to indicate the architectural condition flags
902 are to be updated, whereas block 1024 denotes the ARM
ISA conditional ALU instruction 124 as simply “ALUOP”
(i.e., with the “S”) to indicate the architectural condition flags
902 are not to be updated. If the conditional ALU instruction
124 specifies that the architectural condition flags 902 are to
be updated, flow proceeds to decision block 1042; otherwise,
flow proceeds to decision block 1012.

Atdecision block 1012, the hardware instruction translator
104 determines whether the conditional AL U instruction 124
is of the type that specifies a pre-shift of one of the ALU
operation operands. The pre-shift may be of an immediate
field to generate a constant source operand, or the pre-shift
may be of a source operand supplied from a register. The
pre-shift amount may be specified as a constant in the condi-
tional ALU instruction 124. Additionally, in the case of a
register-shifted operand, the pre-shift amount may be speci-
fied as a value in a register. In the case of the ARM ISA, a
pre-shift of an immediate value by an immediate shift amount
to generate a constant source operand is referred to as a
modified immediate constant. The pre-shift operation gener-
ates a carry flag value. For some types of ALU operations the
architectural carry flag 902 is updated with the carry flag
value generated by the shift operation, whereas for some
types of ALU operations the architectural carry flag 902 is
updated with the carry flag value generated by the ALU
operation. However, the carry flag value generated by the
pre-shift is not used to determine whether the condition speci-
fied by the conditional ALU instruction 124 is satisfied;
rather, the current architectural carry flag 902 value is used. It
is noted that, for example, the ARM ISA MUL, ASR, LSL,
LSR, ROR, and RRX instructions cannot specify a pre-shift
operation and are therefore processed as described with
respect to blocks 1024, 1026 or 1044. Additionally, the ver-
sions of the MOV and MVN instructions that specify a modi-
fied immediate constant operand may specify a pre-shift
operation, whereas the versions of the MOV and MVN
instructions that do not specify a modified immediate con-
stant operand, i.e., that specify a register operand, may not
specify a pre-shift operation and are therefore processed as
described with respect to blocks 1024, 1026 or 1044. As
mentioned above, the pre-shift may be of an immediate field
to generate a constant source operand, or the pre-shift may be
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of'asource operand supplied from a register. If the conditional
ALU instruction 124 specifies a pre-shift, flow proceeds to
decision block 1032; otherwise, flow proceeds to decision
block 1022.

Atdecision block 1022, the hardware instruction translator
104 determines whether the conditional ALU instruction 124
specifies an ALU operation that uses the carry flag. Examples
of ARM ISA instructions 124 that use the carry flag are the
add with carry (ADC), reverse subtract with carry (RSC), and
subtract with carry (SBC) instructions as well as instructions
that specify a shifted register operand in which the shift
operation uses the carry flag, namely the RRX shift type. If
the conditional AL U instruction 124 specifies an ALU opera-
tion that uses the carry flag, flow proceeds to block 1026;
otherwise, flow proceeds to block 1024.

At block 1024, the hardware instruction translator 104
translates the non-flag-updating, non-pre-shifting, non-carry-
using conditional ALU instruction 124 into first and second
microinstructions 126, namely: (1) an ALU operation micro-
instruction 126 (denoted ALUOP); and (2) a conditional
move microinstruction 126 (denoted XMOV). In the example
of'block 1024, the conditional AL U instruction 124 specifies
a first source register (R1) and a second source register (R2),
an ALU operation (denoted ALUOP) to be performed on R1
and R2 to generate a result, and a destination register (RD) to
which the result is conditionally written. The ALUOP micro-
instruction 126 specifies the same ALU operation and source
operands specified by the conditional ALU instruction 124.
The ALUOP microinstruction 126 performs the ALU opera-
tion on the two source operands and writes the result to a
temporary register (denoted T2). The XMOV microinstruc-
tion 126 specifies the same condition specified by the condi-
tional ALU instruction 124. The XMOV microinstruction
126 receives the value of the temporary register written by the
ALUOP microinstruction 126 and receives the old, or current,
value of the destination register (RD). The XMOV microin-
struction 126 receives the condition flags 924 and determines
whether they satisfy the condition. If the condition is satisfied,
the XMOV microinstruction 126 writes the temporary regis-
ter value to the destination register (RD), and otherwise writes
the old destination register value back to the destination reg-
ister. [tis noted that although two source register operands are
specified in the example, one of the source operands may be
a constant operand specified in an immediate field of the
conditional ALU instruction 124 rather than provided from a
register. The execution of the microinstructions 126 is
described in more detail with respect to FIG. 20. Use of the
term “old” in FIG. 10 et seq. to refer to the flag or destination
register values, unless otherwise indicated, refers to the val-
ues received by the execution unit 424 when it executes the
microinstruction 126. These values may also be referred to as
the current values. In the case of the destination register, the
old, or current, value is received from either the forwarding
result bus 128 of FIG. 1, the ROB 422, or the architectural
register file 106. In the case of the flags, as described with
respect to FIG. 9, the old, or current, value is received from
either the forwarding flag bus 928, the ROB 422, or the
architectural condition flags register 926. Flow ends at block
1024.

At block 1026, the hardware instruction translator 104
translates the non-flag-updating, non-pre-shifting, carry-us-
ing conditional ALU instruction 124 into first and second
microinstructions 126, namely: (1) a carry-using ALU opera-
tion microinstruction 126 (denoted ALUOPUC); and (2) a
conditional move microinstruction 126 (denoted XMOV). In
the example of block 1026, the conditional AL U instruction
124 is similar to that of block 1024, except that the ALU
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operation it specifies uses the carry flag. The two microin-
structions 126 are similar to those described with respect to
block 1024; however, the ALUOPUC microinstruction 126
also receives the condition flags 924 in order to obtain the
current value of the carry flag for use in the carry-using ALU
operation. The execution of the microinstructions 126 is
described in more detail with respect to FIG. 19. Flow ends at
block 1026.

Atdecision block 1032, the hardware instruction translator
104 determines whether the conditional AL U instruction 124
specifies an ALU operation that uses the carry flag. [fthe ALU
operation uses the carry flag, flow proceeds to block 1036;
otherwise, flow proceeds to block 1034.

At block 1034, the hardware instruction translator 104
translates the non-flag-updating, pre-shifting, non-carry-us-
ing conditional ALU instruction 124 into first, second and
third microinstructions 126, namely: (1) a shift microinstruc-
tion 126 (denoted SHF); (2) an ALU operation microinstruc-
tion 126; and (3) a conditional move microinstruction 126. In
the example of block 1034, the conditional ALU instruction
124 is similar to that described with respect to block 1024;
however, the conditional AL U instruction 124 also specifies a
pre-shift operation on the second source operand (R2) by a
shift amount which, in the example of block 1034, is held in
a third source register (R3) specified by the conditional ALU
instruction 124. However, if the conditional ALU instruction
124 is of the type that specifies the shift amount as a constant
within the instruction 124, then the third source register is not
used. The list of possible pre-shift operations the conditional
ALU instruction 124 may specify include, but are not limited
to, a logical shift left (LSL), logical shift right (LSR), arith-
metic shift right (ASR), rotate right (ROR), and rotate right
with extend (RRX). In one embodiment, the hardware
instruction translator 104 emits a shift microinstruction 126
to ensure that the carry value is generated according to the
semantics of the ARM ISA, particularly as described in the
ARM Architecture Reference Manual with respect to the
individual ARM instruction descriptions and at pages A8-10
through A8-12, and A5-10 through A5-11, for example. The
shift microinstruction 126 specifies the same pre-shift opera-
tion specified by the conditional ALU instruction 124. The
shift microinstruction 126 also specifies the same R2 and R3
source operands specified by the conditional AL U instruction
124. The shift microinstruction 126 performs the pre-shift
operation by the shift amount on the second source operand
R2 and writes the result to a temporary register (denoted T3).
Although in the case of block 1034 the carry flag value gen-
erated by the shift microinstruction 126 is not used since the
conditional ALU instruction 124 specifies that the architec-
tural condition flags 902 are not updated, in the case of block
1056, for example, the carry flag value generated by the shift
microinstruction 126 is used as discussed in more detail
below. Furthermore, the pre-shift operation may require the
old carry flag to be rotated into the resulting shifted value; for
example, the RRX pre-shift operation shifts the carry flag into
the most significant bit of the result. In such situations,
although not shown in FIG. 10 (except in block 1056), the
shift microinstruction 126 will also read the condition flags
924 to get the current carry flag value. The ALUOP microin-
struction 126 is similar to that described with respect to block
1024; however, it receives the value of T3 rather than R2 and
performs the ALU operation on R1 and T3 to generate the
result written to T2. The XMOV microinstruction 126 is
similar to that described with respect to block 1024. The
execution of the microinstructions 126 is described in more
detail with respect to FIG. 18. Flow ends at block 1034.
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At block 1036, the hardware instruction translator 104
translates the non-flag-updating, pre-shifting, carry-using
conditional ALU instruction 124 into first, second and third
microinstructions 126, namely: (1) a shift microinstruction
126; (2) a carry-using ALU operation microinstruction 126;
and (3) a conditional move microinstruction 126. In the
example of block 1036, the conditional AL U instruction 124
is similar to that of block 1034, except that the ALU operation
it specifies uses the carry flag. The three microinstructions
126 are similar to those described with respect to block 1034;
however, the ALUOPUC microinstruction 126 also receives
the condition flags 924 in order to obtain the current value of
the carry flag for use in the carry-using AL U operation. The
execution of the microinstructions 126 is described in more
detail with respect to FIG. 17. Flow ends at block 1036.

Atdecision block 1042, the hardware instruction translator
104 determines whether the conditional ALU instruction 124
is of the type that specifies a pre-shift of one of the ALU
operation operands. If the conditional ALU instruction 124
specifies a pre-shift, flow proceeds to decision block 1052;
otherwise, flow proceeds to block 1044.

At block 1044, the hardware instruction translator 104
translates the flag-updating, non-pre-shifting conditional
ALU instruction 124 into first and second microinstructions
126, namely: (1) a conditional AL U operation microinstruc-
tion 126 (denoted ALUOP CC); and (2) a conditional move
microinstruction 126 (denoted CMOV). In the example of
block 1044, the conditional ALU instruction 124 is similar to
the conditional AL U instruction 124 of block 1024 except that
it updates the architectural condition flags 902. The condi-
tional ALU microinstruction 126 specifies the same condition
and source operands specified by the conditional ALU
instruction 124. The conditional ALU operation microin-
struction 126 performs the ALLU operation on the two source
operands, and writes the result to a temporary register (de-
noted T2). Additionally, the conditional ALU operation
microinstruction 126 receives the architectural condition
flags 902 and determines whether they satisfy the condition.
Furthermore, the conditional ALU operation microinstruc-
tion 126 writes the condition flags register 926. More specifi-
cally, the conditional ALU operation microinstruction 126
writes the SAT bit 904 to indicate whether the architectural
condition flags 902 satisfy the condition. Furthermore, if the
condition was not satisfied, the conditional ALU operation
microinstruction 126 writes the old condition flag values to
the architectural condition flags 902; whereas, if the condition
was satisfied, the conditional ALU operation microinstruc-
tion 126 updates the architectural condition flags 902 based
on the result of the ALU operation. The update values of the
architectural condition flags 902 are dependent upon the type
of ALU operation. That is, for some types of ALU operations,
all of the architectural condition flags 902 are updated with
new values based on the result of the ALU operation;
whereas, for some types of ALU operations, some of the
architectural condition flags 902 (in one embodiment the Z
and N flags) are updated with new values based on the result
of the ALU operation, but the old values are retained for
others of the architectural condition flags 902 (in one embodi-
ment the V and C flags). The updating of the architectural
condition flags 902 is described in more detail with respect to
FIG. 14. The CMOV microinstruction 126 receives the value
of the temporary register (T2) written by the ALUOP micro-
instruction 126 and receives the old, or current, value of the
destination register (RD). The CMOV microinstruction 126
receives the condition flags 924 and examines the SAT bit 904
to determine whether the conditional AL U operation micro-
instruction 126 indicated that the architectural condition flags
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902 satisfy the condition. If the condition is satisfied, the
CMOV microinstruction 126 writes the temporary register
value to the destination register, and otherwise writes the old
destination register value back to the destination register. The
execution of the microinstructions 126 is described in more
detail with respect to FIG. 14. It is noted that the AL U opera-
tion performed by the conditional ALU operation microin-
struction 126 generated at block 1044 (and at blocks 1054 and
1056) may be an ALU operation that uses the carry flag
(similar to those described with respect to blocks 1026 and
1036), and since the microinstruction 126 reads the flags (as
indicated by the RDFLAGS indicator) the execution unit 424
has the carry flag to perform the carry-using AL U operation.
Flow ends at block 1044.

Atdecision block 1052, the hardware instruction translator
104 determines whether the conditional AL U instruction 124
specifies an ALU operation that is of the type that updates the
architectural carry flag 902. It is necessary for the hardware
instruction translator 104 to make this distinction because the
carry flag value generated by the pre-shift must be used to
update the architectural carry flag 902, rather than the carry
flag value generated based on the ALU operation, if the ALU
operation does not update the architectural carry flag 902. In
one embodiment, the ARM ISA instructions 124 that specify
an ALU operation that does not update the architectural carry
flag 902, and which may specify a pre-shift operation,
include, but are not limited to, AND, BIC, EOR, ORN, ORR,
TEQ and TST, as well as MOV/MVN instructions 124 that
specify a modified immediate constant with a non-zero rota-
tion value. If the ALU operation updates the architectural
carry flag 902, flow proceeds to block 1054; otherwise, flow
proceeds to block 1056.

At block 1054, the hardware instruction translator 104
translates the flag-updating, pre-shifting, carry-updating con-
ditional ALU instruction 124 into first, second and third
microinstructions 126, namely: (1) a shift microinstruction
126; (2) a conditional carry-updating AL U operation micro-
instruction 126 (denoted CUALUOP CC); and (3) a condi-
tional move microinstruction 126. In the example of block
1054, the conditional ALU instruction 124 is similar to that
described with respect to block 1034; however, the condi-
tional ALU instruction 124 also specifies that the architec-
tural condition flags 902 are to be updated. The shift micro-
instruction 126 is similar to that described with respect to
block 1034. The conditional carry-updating ALU operation
microinstruction 126 specifies the same condition specified
by the conditional ALU instruction 124. The conditional
carry-updating ALU operation microinstruction 126 per-
forms the ALU operation on R1 and T3 and writes the result
to a temporary register (denoted T2). Additionally, the con-
ditional carry-updating AL U operation microinstruction 126
receives the architectural condition flags 902 and determines
whether they satisfy the condition. Furthermore, the condi-
tional carry-updating ALU operation microinstruction 126
writes the condition flags register 926. More specifically, the
conditional carry-updating ALU operation microinstruction
126 writes the SAT bit 904 to indicate whether the architec-
tural condition flags 902 satisfy the condition. Furthermore, if
the condition was not satisfied, the conditional carry-updat-
ing ALU operation microinstruction 126 writes the old con-
dition flag values to the architectural condition flags 902;
whereas, if the condition was satisfied, the conditional carry-
updating ALU operation microinstruction 126 updates the
architectural condition flags 902 based on the result of the
ALU operation. The updating of the architectural condition
flags 902 is described in more detail with respect to FIG. 16.
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The CMOV microinstruction 126 is similar to that described
with respect to block 1044. Flow ends at block 1054.

At block 1056, the hardware instruction translator 104
translates the flag-updating, pre-shifting, non-carry-updating
conditional ALU instruction 124 into first, second and third
microinstructions 126, namely: (1) a shift microinstruction
126; (2) a conditional non-carry-updating ALU operation
microinstruction 126 (denoted NCUALUOP CC); and (3) a
conditional move microinstruction 126. In the example of
block 1056, the conditional ALU instruction 124 is similar to
that described with respect to block 1054; however, the con-
ditional ALU instruction 124 specifies a non-carry-updating
ALU operation. Consequently, the architectural carry flag
902 is updated with the pre-shift carry flag value if the con-
dition is satisfied. The shift microinstruction 126 is similar to
that described with respect to block 1034; however, the shift
microinstruction 126 reads and writes the condition flags
register 926. More specifically, the shift microinstruction
126: (1) writes the carry flag value generated by the pre-shift
operation to the PSC bit 906; (2) sets the USE bit 908 to
instruct the conditional non-carry-updating ALU operation
microinstruction 126 to use the PSC 906 to update the archi-
tectural carry flag 902; and (3) writes the old architectural
condition flags 902 back to the condition flags register 926, so
that the conditional non-carry-updating ALU operation
microinstruction 126 can evaluate the old value of the archi-
tectural condition flags 902 to determine whether they satisfy
the condition. The conditional non-carry-updating ALU
operation microinstruction 126 specifies the same condition
specified by the conditional ALU instruction 124. The con-
ditional non-carry-updating AL.U operation microinstruction
126 performs the ALU operation on R1 and T3 and writes the
result to a temporary register (denoted T2). Additionally, the
conditional non-carry-updating AL U operation microinstruc-
tion 126 receives the architectural condition flags 902 and
determines whether they satisfy the condition. Furthermore,
the conditional non-carry-updating AL U operation microin-
struction 126 writes the condition flags register 926. More
specifically, the conditional non-carry-updating AL.U opera-
tion microinstruction 126 writes the SAT bit 904 to indicate
whether the architectural condition flags 902 satisfy the con-
dition. Furthermore, if the condition was not satisfied, the
conditional non-carry-updating AL U operation microinstruc-
tion 126 writes the old condition flag values to the architec-
tural condition flags 902; whereas, if the condition was satis-
fied, the conditional non-carry-updating ALU operation
microinstruction 126 updates the architectural condition flags
902 based on the result of the AL U operation. More specifi-
cally, the architectural overflow (V) flag 902 is written with
the old overflow flag value 924. Additionally, the architectural
carry flag 902 is updated with the pre-shift carry flag value in
the PSC bit 906 if the USE bit 908 so indicates, and otherwise
is updated with the old carry flag value 924. The updating of
the architectural condition flags 902 is described in more
detail with respect to FIG. 15. The CMOV microinstruction
126 is similar to that described with respect to block 1044. In
an alternate embodiment, as described above and below, the
USE bit 908 does not exist and instead the hardware instruc-
tion translator 104 translator directly generates a functional
equivalent of the USE bit 908 as an indicator within the
NCUALUOP microinstruction 126, which the execution unit
424 examines to determine whether to update the architec-
tural carry flag 902 with the pre-shift carry flag value in the
PSC bit 906 or with the old carry flag value 924. Flow ends at
block 1056.

Embodiments are contemplated in which the hardware
instruction translator 104 is configured to generate and pro-
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vide a modified immediate constant rather than emitting a
shift microinstruction 126 to do so. In this embodiment, pro-
cessing is similar to that described with respect to blocks
1024, 1026 and 1044, rather than blocks 1034, 1036 and
1054/1056, respectively. Furthermore, in this embodiment,
the hardware instruction translator 104 also generates and
provides the carry flag value from the pre-shift for use by the
conditional ALU operation microinstruction 126 in updating
the architectural carry flag 902.

Referring now to FIG. 11, a flowchart illustrating operation
of the execution units 424 of FIG. 4 to execute a shift micro-
instruction 126 according to the present invention is shown.
Flow begins at block 1102.

At block 1102, one of the execution units 424 of FIG. 4
receives a shift microinstruction 126, such as those described
with respect to FIG. 10 that were generated by the hardware
instruction translator 104 in response to encountering a con-
ditional ALU instruction 124. The execution unit 424 also
receives the source operands specified by the microinstruc-
tion 126, including the condition flag values 924, which may
or may not be used by the microinstruction 126. Flow pro-
ceeds to block 1104.

At block 1104, the execution unit 424 performs the shift
operation specified by the shift microinstruction 126 on the
operands specified by the shift microinstruction 126 to gen-
erate a result and outputs the result on the result bus 128. In
one embodiment, the shift operation may include, but is not
limited to, a logical shift left (LSL), logical shift right (LSR),
arithmetic shift right (ASR), rotate right (ROR), and rotate
right with extend (RRX). Additionally, the execution unit 424
generates new condition flag values based on the result of the
shift operation. More specifically, the execution unit 424 gen-
erates a carry flag value based on the result of the shift opera-
tion. In one embodiment: in the case of an LSL shift opera-
tion, the carry flag value is bit N of an extended value that is
M least significant bit zeroes concatenated with the operand
being left-shifted, where N is the number of bits in the original
operand and M is the specified positive shift amount; in the
case of an LSR shift operation, the carry flag value is bit
(M-1) of an extended value that is the original operand zero-
extended by (M+N) bits, where M is the specified positive
shift amount and N is the number of bits in the original
operand; in the case of an ASR shift operation, the carry flag
value is bit (M-1) of an extended value that is the original
operand sign-extended by (M+N) bits, where M is the speci-
fied positive shift amount and N is the number of bits in the
original operand; in the case of a ROR shift operation, the
carry flag value is bit (N-1) of the result of the operand being
rotated right by the specified non-zero shift amount mod N,
where N is the number of bits in the original operand; and in
the case of a RRX shift operation, the carry flag value is bit
zero of the original operand. Flow proceeds to decision block
1106.

At decision block 1106, the execution unit 424 determines
whether the shift microinstruction 126 emitted by the hard-
ware instruction translator 104 indicates that the execution
unit 424 should write the carry flag, as indicated by
WRCARRY in block 1056 of FIG. 10, for example. More
specifically, the shift microinstruction 126 indicates whether
the PSC bit 906 on the flag bus output 928 should be written
with the carry flag value generated by the shift operation and
the USE bit 908 should be set, which will enable the subse-
quent conditional non-carry-updating ALU operation micro-
instruction 126 to conditionally write the PSC bit 906 value to
the architectural carry flag 902. If the execution unit 424
should write the carry flag, flow proceeds to block 1114;
otherwise, flow proceeds to decision block 1108.
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At decision block 1108, the execution unit 424 determines
whether the shift microinstruction 126 emitted by the hard-
ware instruction translator 104 indicates that the execution
unit 424 should write the condition flags (denoted
WRFLAGS). Although none of the shift microinstructions
126 of FIG. 10 indicate the execution unit 424 should write
the condition flags when the shift microinstruction 126 does
not indicate it should write the PSC bit 906 (denoted
WRCARRY), the hardware instruction translator 104 might
generate such a shift microinstruction 126 when translating
other ISA instructions 124. If the execution unit 424 should
write the condition flags, flow proceeds to block 1112; oth-
erwise, flow ends.

Atblock 1112, the execution unit 424 outputs values on the
flag bus 928 to clear the PSC 906, USE 908, and SAT 904 bits
to zero, and write the architectural condition flags 902 with
the new architectural condition flags 902 value generated at
block 1104. Flow ends at block 1114.

Atblock 1114, the execution unit 424 outputs values on the
flag bus 928 to write the PSC bit 906 with the carry flag value
generated at block 1112, set the USE bit 908 to one, clear the
SAT bit 904 to zero, and write the architectural condition flags
902 with the old architectural condition flags 902 value
received at block 1102. Flow ends at block 1114.

Referring now to FIG. 12, aflowchart illustrating operation
of the execution units 424 of FIG. 4 to execute a conditional
ALU microinstruction 126 according to the present invention
is shown. Flow begins at block 1202.

At block 1202, one of the execution units 424 of FIG. 4
receives a conditional ALU microinstruction 126, such as
those described with respect to FIG. 10 that were generated
by the hardware instruction translator 104 in response to
encountering a conditional ALU instruction 124. The execu-
tion unit 424 also receives the source operands specified by
the microinstruction 126, including the condition flag values
924, which may or may not be used by the microinstruction
126. It should be understood that the execution units 424 also
execute unconditional ALU microinstructions 126, such as
those described with respect to FIG. 10 that were generated
by the hardware instruction translator 104 in response to
encountering a conditional AL U instruction 124, according to
a process similar to that described with respect to FIG. 12,
excluding the actions performed at blocks 1209, 1212, 1214
and 1216. Furthermore, the execution unit 424 that executes
the conditional ALU microinstruction 126 can be the same as
or different from the execution unit 424 that executes the
associated shift microinstruction 126 and/or XMOV/CMOV
microinstruction 126. Flow proceeds to decision block 1204.

At block 1204, the execution unit 424 performs the ALU
operation specified by the conditional ALU microinstruction
126 on the operands specified by the conditional ALU micro-
instruction 126 to generate a result and outputs the result on
the result bus 128. Additionally, the execution unit 424 gen-
erates new architectural condition flag 902 values based on
the result of the ALU operation. If the ALU operation is one
that uses the carry flag, the execution unit 424 uses the old
value of the received architectural carry flag 924 rather than
the new carry flag value generated by the ALU operation.
Flow proceeds to block 1206.

At block 1206, the execution unit 424 determines whether
the architectural condition flags 924 received at block 1202
satisfy the specified condition. The determination is subse-
quently used at blocks 1212 and 1214. Flow proceeds to
decision block 1208.

At decision block 1208, the execution unit 424 determines
whether the conditional ALU microinstruction 126 instructs
the execution unit 424 to write the condition flags register
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926, as indicated by WRFLAGS in various blocks of FIG. 10,
for example. If so, flow proceeds to decision block 1214;
otherwise, flow proceeds to decision block 1209.

At decision block 1209, if it was determined at block 1206
that the condition was satisfied, flow proceeds to block 1211;
otherwise, flow proceeds to block 1212.

Atblock 1211, the execution unit 424 outputs on the result
bus 128 the result generated at block 1204, since the condition
was satisfied. However, the conditional ALU microinstruc-
tion 126 does not update the condition flags register 926 since
the conditional ALU microinstruction 126 specified to not
update the architectural condition flags 902. As described
above, the result and condition flag values output on the result
bus 128/928 by the execution units 424 are forwarded to the
other execution units 424 of the execution pipeline 112 and
are also written to the ROB 422 entry associated with the
conditional ALU microinstruction 126. It should be under-
stood that even though the microinstruction 126 specified to
not update the architectural condition flags 902, the execution
unit 424 still outputs some value onto the flag result bus 928
that is written to the ROB 422 entry associated with the
conditional ALU microinstruction 126, but which will not be
retired to the destination register 106 and/or condition flags
register 926. That is, the determination as to whether the
values written to the ROB 422 entry are ultimately retired to
is made by the retire unit of the execution pipeline 112 based
on the type of microinstruction 126, the occurrence of excep-
tion, branch misprediction, or other invalidating event, rather
than by the execution unit 424 itself. Flow ends at block 1211.

At block 1212, the execution unit 424 outputs on the result
bus 128 the first source operand. It is noted that when the
condition is not satisfied, the first source operand output is not
used in the case of the various conditional ALU microinstruc-
tions 126 described with respect to FIG. 10, for example.
More specifically, the XMOV and CMOV microinstructions
126 of FIG. 10 will write back the old destination register
value rather than the T2 register value. However, as described
more withrespectto FIG. 21 et seq., in translating other forms
of conditional ALU instructions 124, namely same-source-
destination conditional AL U instructions 124 (or other ISA
instructions 124), the hardware instruction translator 104
may advantageously generate conditional ALU microinstruc-
tion 126 in which the first source operand is the destination
register specified by the ISA instruction 124 such that the
original destination register value is written back if the con-
dition is not satisfied. As described at block 1211, the condi-
tional ALU microinstruction 126 does not update the condi-
tion flags register 926 since the conditional ALU
microinstruction 126 specified to not update the architectural
condition flags 902. Flow ends at block 1212.

At decision block 1214, if it was determined at block 1206
that the condition was satisfied, flow proceeds to decision
block 1218; otherwise, flow proceeds to block 1216.

At block 1216, the execution unit 424 outputs the first
source operand, clears the USE 908, PSC 906, and SAT 904
bits to zero, and outputs the old architectural condition flags
924 value received at block 1202 onto the flag bus 928, which
advantageously aids in collectively performing the condi-
tional ALU instruction 124 as a no-op instruction (i.e., to not
perform the conditional ALU instruction 124) by not modi-
fying the value of the architectural condition flags 902. Flow
ends at block 1216.

At decision block 1218, the execution unit 424 determines
whether the conditional ALU microinstruction 126 specifies a
carry-updating ALU operation. In one embodiment, the
execution unit 424 decodes the opcode of the conditional
ALU microinstruction 126 to make this determination. In an
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alternate embodiment, the hardware instruction translator
104 determines whether the ALU operation is carry-updating
at block 1052 of FIG. 10 and provides an indicator of such to
the execution unit 424. In one embodiment, the non-carry-
updating AL U operations include, but are not limited to, those
specified by the AND, BIC, EOR, ORN, ORR, TEQ, TST,
MUL, MOV, MVN, ASR, LSL, LSR, ROR, and RRX ARM
ISA instructions 124. If the ALU operation is carry-updating,
flow proceeds to block 1222; otherwise, flow proceeds to
decision block 1224.

At block 1222, the execution unit 424 outputs the result
generated at block 1204, clears the USE 908 and PSC 906 bits
to zero, sets the SAT bit 904 to one, and outputs the new
architectural condition flags value generated at block 1204
onto the flag bus 928. It is noted that conditional AL U micro-
instructions 126 that do not update the overflow flag and that
specify a carry-updating ALU operation, such as the ASR,
LSL, LSR, ROR, and RRX operations, are processed slightly
differently than described with respect to block 1222. In
particular, the execution unit 424 outputs the old V flag value
rather than the new V flag value. Flow ends at block 1222.

At decision block 1224, the execution unit 424 examines
the USE bit 908. If the USE bit 908 is set to one, flow proceeds
to block 1228; otherwise, flow proceeds to block 1226. In an
alternate embodiment, as described above and below, the
USE bit 908 does not exist and instead the execution unit 424
examines the indicator within the conditional ALU microin-
struction 126 to determine whether to update the architectural
carry flag 902 with the pre-shift carry flag value in the PSC bit
906 or with the old carry flag value 924.

At block 1226, the execution unit 424 outputs the result
generated at block 1204, clears the USE 908 and PSC 906 bits
to zero, sets the SAT bit 904 to one, and outputs the architec-
tural condition flags onto the flag bus 928 as follows: the C
flag and V flag are written with the old C flag and V flag
values, respectively, received at block 1202; the N flag and Z
flag are written with the new N flag and Z flag values, respec-
tively, generated at block 1204. Flow ends at block 1226.

At block 1228, the execution unit 424 outputs the result
generated at block 1204, clears the USE 908 and PSC 906 bits
to zero, sets the SAT bit 904 to one, and outputs the architec-
tural condition flags onto the flag bus 928 as follows: the C
flag is written with the PSC bit 906 value received at block
1202; the V flag is written with the old V flag value received
at block 1202; the N flag and Z flag are written with the new
N flag and Z flag values, respectively, generated at block
1204. Flow ends at block 1228.

In one embodiment, the execution unit 424 executes the
conditional ALU microinstruction 126 differently with
respect to the values output on the flag bus 928 depending
upon whether the instruction mode indicator 132 indicates
x86 or ARM. More specifically, if the instruction mode indi-
cator 132 indicates x86, the execution unit 424 does not make
a distinction between whether the ALU operation type is
carry-updating or non-carry-updating, does not consider the
USE bit 908, and updates the condition code flags in accor-
dance with x86 semantics.

Referring now to FIG. 13, aflowchart illustrating operation
of the execution units 424 of FIG. 4 to execute a conditional
move microinstruction 126 according to the present invention
is shown. Flow begins at block 1302.

At block 1302, one of the execution units 424 of FIG. 4
receives a conditional move microinstruction 126, such as
those described with respect to FIG. 10 that were generated
by the hardware instruction translator 104 in response to
encountering a conditional ALU instruction 124, denoted
CMOV or XMOV. The execution unit 424 also receives the
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source operands specified by the microinstruction 126,
including the condition flag values 924, which may or may
not be used by the microinstruction 126. Flow proceeds to
decision block 1304.

At decision block 1304, the execution unit 424 decodes the
microinstruction 126 to determine whether it is an XMOV
microinstruction 126 or a CMOV microinstruction 126. If
CMOV 126, flow proceeds to block 1308; otherwise, flow
proceeds to block 1306.

At block 1306, the execution unit 424 examines the archi-
tectural condition flags 902 received at block 1302 and deter-
mines whether the condition is satisfied. Flow proceeds to
block 1312.

Atblock 1308, the execution unit 424 examines the SAT bit
904 received at block 1302 and determines from it whether
the condition is satisfied, as previously determined by a cor-
responding conditional ALU microinstruction 126 that wrote
the SAT bit 904, such as those described in blocks 1044, 1054,
and 1056 of FIG. 10. Flow proceeds to decision block 1312.

At decision block 1312, if the condition determined at the
appropriate block 1306 or 1308 was satisfied, flow proceeds
to block 1316; otherwise, flow proceeds to block 1314.

At block 1314, the execution unit 424 outputs on the result
bus 128 the first source operand value. In the context of FIG.
10, the first source operand value is the old destination regis-
ter value, which advantageously aids in collectively perform-
ing the conditional ALU instruction 124 as a no-op instruc-
tion (i.e., to not perform the conditional AL U instruction 124)
by not modifying the value of the destination register since
the specified condition was not satisfied. Flow ends at block
1314.

At block 1316, the execution unit 424 outputs on the result
bus 128 the second source operand value. In the context of
FIG. 10, the second source operand value is the temporary
register value written by the associated conditional AL U
microinstruction 126, which advantageously aids in collec-
tively performing the conditional ALU instruction 124 by
writing the result to the destination register since the specified
condition was satisfied. Flow ends at block 1316.

Referring now to FIG. 14, a block diagram illustrating
operation of the execution pipeline 112 of FIG. 1 to execute a
conditional ALU instruction 124 according to the present
invention is shown. More specifically, the conditional ALU
instruction 124 is a flag-updating, non-pre-shifting, condi-
tional ALU operation ISA instruction 124 which the hard-
ware instruction translator 104 translates into the microin-
structions 126 of block 1044 of FIG. 10. The RAT 402 of FIG.
4 generates dependencies for the CMOV microinstruction
126 on the T2 register and condition flags register 926 values
written by the conditional ALUOP microinstruction 126,
among others. The instruction dispatcher 404 dispatches the
microinstructions 126 to the appropriate reservation stations
406 of F1G. 4. The instruction issue unit 408 determines that
a microinstruction 126 is ready to be issued from its reserva-
tion station 406 to the corresponding execution unit 424 for
execution when all of the source operand values are available
to the microinstruction 126 (either from the forwarding bus
128, the ROB 422, or the register file 106). The microinstruc-
tions 126 are executed according to the description of FIGS.
12 and 13.

The execution unit 424 receives the conditional ALUOP
microinstruction 126 of block 1044 from the reservation sta-
tion 406, the source operand values from registers R1 and R2
of the register file 106 of FIG. 1, and the condition flags 924
from the condition flags register 926 of FIG. 9 (or from the
forwarding bus 128 and/or ROB 422) according to block 1202
of FIG. 12. The execution unit 424 performs the ALU opera-
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tion on R1 and R2 (and the received C flag 902 if the ALU
operation is a carry-using operation) to generate a result to be
written to temporary register T2 according to block 1204.
Additionally: (1) if the architectural condition flags 902 do
not satisfy the specified condition (denoted NOT SATISFIED
in FIG. 14), the execution unit 424 generates the new condi-
tion flags 928 values according to block 1216 of FIG. 12 for
writing to the condition flags register 926; (2) if the architec-
tural condition flags 902 satisfy the specified condition and
the ALU operation is non-carry-updating (denoted
NCUALUOP SAT. in FIG. 14), the execution unit 424 gen-
erates the new condition flags 928 values according to block
1226 of FIG. 12 for writing to the condition flags register 926;
and (3) if the architectural condition flags 902 satisfy the
specified condition and the ALLU operation is carry-updating
(denoted CUALUOP SAT. in FIG. 14), the execution unit 424
generates the new condition flags 928 values according to
block 1222 of FIG. 12 for writing to the condition flags
register 926. The T2 value and condition flags 928 are pro-
vided on forwarding bus 128 for consumption by the CMOV
microinstruction 126, are written to the ROB 422 entry for
consumption by the CMOV microinstruction 126 if not from
the forwarding bus 128, and are eventually retired to their
appropriate architectural state, barring the occurrence of an
exception, branch misprediction, or other invalidating event,
for consumption by the CMOV microinstruction 126 if not
from the forwarding bus 128 or ROB 422 entry. In particular,
the mux 922 of FIG. 9 operates to select the appropriate
source of the condition flags 924 for the execution unit 424.

The execution unit 424 receives the CMOV microinstruc-
tion 126 of block 1044, the source operand values T2 and RD,
and the condition flags 924 according to block 1302 of FIG.
13. The execution unit 424 outputs as its result the value of the
T2 source operand if the SAT bit 904 is set and outputs the
value of the RD source operand if the SAT bit 904 is clear,
according to blocks 1316 and 1314, respectively, of FIG. 13.
The result value is provided on forwarding bus 128 for con-
sumption by subsequent microinstructions 126, is written to
the ROB 422 entry, and is eventually retired to its appropriate
architectural state barring the occurrence of an exception,
branch misprediction, or other invalidating event.

As discussed above with respect to block 1222, flag-updat-
ing conditional ALU instructions 124 that specify a carry-
updating ALU operation that does not update the overflow
flag, such as the ARM ISA ASR, LSL, LSR, ROR, and RRX
instructions 124, are processed slightly differently than
shown in FIG. 14. In particular, the execution unit 424 outputs
the old V flag value rather than the new V flag value. Finally,
as mentioned above, flag-updating ARM ISA MUL, and
MOV/MVN (register) instructions 124 are non-carry-updat-
ing and cannot specify a pre-shift operation and are therefore
processed as described with respect to block 1044, and more
specifically as described with respect to block 1226 of FIG.
12.

As may be observed from the above, advantageously, the
ALU operation microinstruction 126 indicates to the CMOV
microinstruction 126 via the SAT bit 904 whether the old
condition flags 902 satisty the specified condition, which
enables the ALU operation microinstruction 126 to clobber
the old value of the condition flags 902, if the condition is
satisfied, with the appropriate values generated based on the
result of the ALU operation.

Referring now to FIG. 15, a block diagram illustrating
operation of the execution pipeline 112 of FIG. 1 to execute a
conditional ALU instruction 124 according to the present
invention is shown. More specifically, the conditional ALU
instruction 124 is a flag-updating, pre-shifting, non-carry-
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updating conditional ALU operation ISA instruction 124
which the hardware instruction translator 104 translates into
the microinstructions 126 of block 1056 of FIG. 10. The
operation according to FIG. 15 is similar in many respects to
the operation described with respect to FIG. 14 such that like
operations are not repeated for the sake of brevity and differ-
ences are now described. The RAT 402 of FIG. 4 generates
dependencies for the NCUALUOP microinstruction 126 on
the T3 register and condition flags register 926 values written
by the shift microinstruction 126, among others. The micro-
instructions 126 are executed according to the description of
FIGS. 11, 12 and 13.

The execution unit 424 receives the shift microinstruction
126 ofblock 1056 from the reservation station 406, the source
operand values from registers R2 and R3 of the register file
106, and the condition flags 924 from the condition flags
register 926 (or from the forwarding bus 128 and/or ROB
422) according to block 1102 of FIG. 11. The execution unit
424 performs the shift operation on R2 and R3 (and the
received C flag 902 if the ALU operation is a carry-using
operation) to generate a result to be written to temporary
register T3 according to block 1104. Additionally, the execu-
tion unit 424 generates the new architectural condition flags
902 values according to block 1104 and writes the new con-
dition flags 928 according to block 1114 of FIG. 11 for
writing to the condition flags register 926. The T3 value and
condition flags 928 are provided on forwarding bus 128 for
consumption by the NCUALUOP microinstruction 126, are
written to the ROB 422 entry for consumption by the
NCUALUQOP microinstruction 126 if not from the forward-
ing bus 128, and are eventually retired to their appropriate
architectural state, barring the occurrence of an exception,
branch misprediction, or other invalidating event, for con-
sumption by the NCUALUOP microinstruction 126 if not
from the forwarding bus 128 or ROB 422 entry. In particular,
the mux 922 of FIG. 9 operates to select the appropriate
source of the condition flags 924 for the execution unit 424.

The execution unit 424 receives the NCUALUOP micro-
instruction 126 of block 1056 from the reservation station
406, the source operand values from registers R1 and T3 of
the register file 106, and the condition flags 924 from the
condition flags register 926 according to block 1202. The
execution unit 424 performs the AL U operationon R1 and T3
(and the received C flag 902 if the ALU operation is a carry-
using operation) to generate a result to be written to tempo-
rary register T2 according to block 1204. Additionally: (1) if
the architectural condition flags 902 do not satisfy the speci-
fied condition (denoted NOT SATISFIED in FIG. 15), the
execution unit 424 generates the new condition flags 928
values according to block 1216 for writing to the condition
flags register 926; (2) if the architectural condition flags 902
satisfy the specified condition and the USE bit 908 is clear
(denoted SAT., USE==0 in FIG. 15), the execution unit 424
generates the new condition flags 928 values according to
block 1226 of FIG. 12 for writing to the condition flags
register 926; and (3) if the architectural condition flags 902
satisfy the specified condition and the USE bit 908 is set
(denoted SAT., USE==1 in FIG. 15), the execution unit 424
generates the new condition flags 928 values according to
block 1228 of FIG. 12 for writing to the condition flags
register 926. The execution of the CMOV microinstruction
126 of FIG. 15 is similar to that described with respect to FIG.
14. In an alternate embodiment, as described above, the USE
bit 908 does not exist and instead the execution unit 424
examines the indicator within the conditional ALU microin-
struction 126 to determine whether to update the architectural
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carry flag 902 with the pre-shift carry flag value in the PSC bit
906 or with the old carry flag value 924.

As may be observed from the above, advantageously, the
shift microinstruction 126 does not clobber the old value of
the condition flags 902, but instead writes the old value of the
condition flags 902 back to the condition flags register 926 so
that the conditional ALU operation microinstruction 126 that
receives the condition flags register 926 result from the shift
microinstruction 126 can determine whether the old condi-
tion flags 902 satisfied the condition specified by the ISA
conditional ALU instruction 124. Stated alternatively, if the
shift microinstruction 126 had clobbered the old carry flag
902 with the newly generated carry flag value, then the con-
ditional ALU operation microinstruction 126 would not have
been able to determine whether the old condition flags 902
satisfied the specified condition.

Referring now to FIG. 16, a block diagram illustrating
operation of the execution pipeline 112 of FIG. 1 to execute a
conditional ALU instruction 124 according to the present
invention is shown. More specifically, the conditional ALU
instruction 124 is a flag-updating, pre-shifting, carry-updat-
ing conditional ALU operation ISA instruction 124 which the
hardware instruction translator 104 translates into the micro-
instructions 126 of block 1054 of FIG. 10. The operation
according to FIG. 16 is similar in many respects to the opera-
tion described with respect to FIG. 15 such that like opera-
tions are not repeated for the sake of brevity and differences
are now described. The RAT 402 of FIG. 4 generates depen-
dencies for the CUALUOP microinstruction 126 on the T3
register value written by the shift microinstruction 126,
among others, but since the shift microinstruction 126 does
not write the condition flags register 926, the RAT 402 does
not generate a dependency upon it.

The execution unit 424 receives the shift microinstruction
126 of block 1054 from the reservation station 406 and the
source operand values from registers R2 and R3 of the register
file 106 according to block 1102, but not the condition flags
924 (unless the ALU operation is a carry-using operation).
The execution unit 424 performs the shift operation on R2 and
R3 (and the received C flag 902 if the ALU operation is a
carry-using operation) to generate a result to be written to
temporary register T3 according to block 1104. The T3 value
is provided on forwarding bus 128 for consumption by the
CUALUOP microinstruction 126, is written to the ROB 422
entry for consumption by the CUALUOP microinstruction
126 if not from the forwarding bus 128, and is eventually
retired to its appropriate architectural state, barring the occur-
rence of an exception, branch misprediction, or other invali-
dating event, for consumption by the CUALUOP microin-
struction 126 if not from the forwarding bus 128 or ROB 422
entry.

The execution unit 424 receives the CUALUOP microin-
struction 126 of block 1054 from the reservation station 406,
the source operand values from registers R1 and T3 of the
register file 106, and the condition flags 924 from the condi-
tion flags register 926 according to block 1202. The execution
unit 424 performs the ALU operation on R1 and T3 (and the
received C flag 902 if the ALU operation is a carry-using
operation) to generate a result to be written to temporary
register T2 according to block 1204. Additionally: (1) if the
architectural condition flags 902 do not satisfy the specified
condition (denoted NOT SATISFIED in FIG. 16), the execu-
tion unit 424 generates the new condition flags 928 values
according to block 1216 for writing to the condition flags
register 926; and (2) if the architectural condition flags 902
satisfy the specified condition (denoted SATISFIED in FIG.
16), the execution unit 424 generates the new condition flags
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928 values according to block 1222 of FIG. 12 for writing to
the condition flags register 926. The execution of the CMOV
microinstruction 126 of FIG. 16 is similar to that described
with respect to FIG. 14.

Referring now to FIG. 17, a block diagram illustrating
operation of the execution pipeline 112 of FIG. 1 to execute a
conditional ALU instruction 124 according to the present
invention is shown. More specifically, the conditional ALU
instruction 124 is a non-flag-updating, pre-shifting, carry-
using conditional ALLU operation ISA instruction 124 which
the hardware instruction translator 104 translates into the
microinstructions 126 of block 1036 of FIG. 10. The opera-
tion according to FIG. 17 is similar in many respects to the
operation described with respect to FIG. 16 such that like
operations are not repeated for the sake of brevity and differ-
ences are now described. The execution of the shift microin-
struction 126 of FIG. 17 is similar to that described with
respect to FIG. 16.

The execution unit 424 receives the ALUOPUC microin-
struction 126 of block 1036 from the reservation station 406,
the source operand values from registers R1 and T3 of the
register file 106, and the condition flags 924 from the condi-
tion flags register 926 according to block 1202. The execution
unit 424 performs the ALU operation on R1 and T3 and the
received C flag 902, since the ALU operation is a carry-using
operation, to generate a result to be written to temporary
register T2 according to block 1204. The execution unit 424
does not write to the condition flags register 926.

The execution unit 424 receives the XMOV microinstruc-
tion 126 of block 1036, the source operand values T2 and RD,
and the condition flags 924 according to block 1302 of FIG.
13. The execution unit 424 outputs as its result the value of the
T2 source operand if the condition flags 924 satisfy the speci-
fied condition and outputs the value of the RD source operand
if the condition flags 924 do not satisfy the specified condi-
tion, according to blocks 1316 and 1314, respectively, of FIG.
13. The result value is provided on forwarding bus 128 for
consumption by subsequent microinstructions 126, is written
to the ROB 422 entry, and is eventually retired to its appro-
priate architectural state barring the occurrence of an excep-
tion, branch misprediction, or other invalidating event.

Referring now to FIG. 18, a block diagram illustrating
operation of the execution pipeline 112 of FIG. 1 to execute a
conditional ALU instruction 124 according to the present
invention is shown. More specifically, the conditional ALU
instruction 124 is a non-flag-updating, pre-shifting, non-
carry-using conditional AL U operation ISA instruction 124
which the hardware instruction translator 104 translates into
the microinstructions 126 of block 1034 of FIG. 10. The
operation according to FIG. 18 is similar in many respects to
the operation described with respect to FIG. 17 such that like
operations are not repeated for the sake of brevity and differ-
ences are now described. The execution of the shift microin-
struction 126 of FIG. 18 is similar to that described with
respect to FIG. 16. The execution of the ALUOP microin-
struction 126 of FIG. 18 is similar to the execution of the
ALUOPUC microinstruction 126 of FIG. 17 except that the
ALUOP microinstruction 126 of FIG. 18 does not use the C
flag 902 to generate its result. The execution of the XMOV
microinstruction 126 of FIG. 18 is similar to the execution of
the XMOV microinstruction 126 of FIG. 17.

Referring now to FIG. 19, a block diagram illustrating
operation of the execution pipeline 112 of FIG. 1 to execute a
conditional ALU instruction 124 according to the present
invention is shown. More specifically, the conditional ALU
instruction 124 is a non-flag-updating, non-pre-shifting,
carry-using conditional AL U operation ISA instruction 124
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which the hardware instruction translator 104 translates into
the microinstructions 126 of block 1026 of FIG. 10. The
operation according to FIG. 19 is similar in many respects to
the operation described with respect to FIG. 17 such that like
operations are not repeated for the sake of brevity and difter-
ences are now described. The translation of the conditional
ALU instruction 124 is a non-flag-updating, non-pre-shift-
ing, carry-using conditional AL U operation ISA instruction
124 does not include a shift microinstruction 126.

The execution unit 424 receives the ALUOPUC microin-
struction 126 of block 1026 from the reservation station 406,
the source operand values from registers R1 and R2 of the
register file 106, and the condition flags 924 from the condi-
tion flags register 926 according to block 1202. The execution
unit 424 performs the ALU operation on R1 and R2 and the
received C flag 902, since the ALU operation is a carry-using
operation, to generate a result to be written to temporary
register T2 according to block 1204. The execution unit 424
does not write to the condition flags register 926. The execu-
tion of the XMOV microinstruction 126 of FIG. 19 is similar
to the execution of the XMOV microinstruction 126 of FIG.
17.

Referring now to FIG. 20, a block diagram illustrating
operation of the execution pipeline 112 of FIG. 1 to execute a
conditional ALU instruction 124 according to the present
invention is shown. More specifically, the conditional ALU
instruction 124 is a non-flag-updating, non-pre-shifting, non-
carry-using conditional AL U operation ISA instruction 124
which the hardware instruction translator 104 translates into
the microinstructions 126 of block 1024 of FIG. 10. The
operation according to FIG. 20 is similar in many respects to
the operation described with respect to FIG. 19 such that like
operations are not repeated for the sake of brevity and difter-
ences are now described. The execution of the ALUOP micro-
instruction 126 of FIG. 20 is similar to the execution of the
ALUOPUC microinstruction 126 of FIG. 19 except that the
ALUOP microinstruction 126 of FIG. 20 does not use the C
flag 902 to generate its result. The execution of the XMOV
microinstruction 126 of FIG. 20 is similar to the execution of
the XMOV microinstruction 126 of FIG. 17.

As may be observed from the foregoing, embodiments
described herein potentially avoid disadvantages of allowing
microinstructions 126 to specity an additional source oper-
and, which may include the following. First, it may require an
additional read port on the general purpose register file for
each execution unit 424 that would execute microinstructions
126 with an additional source operand. Second, it may require
an additional read port on the ROB 422 for each execution
unit 424 that would execute microinstructions 126 with an
additional source operand. Third, it may require more wires
for the forwarding buses 128 for each execution unit 424 that
would execute microinstructions 126 with an additional
source operand. Fourth, it may require an additional relatively
large multiplexer for each execution unit 424 that would
execute microinstructions 126 with an additional source oper-
and. Fifth, it may require Q additional tag comparators, where

Q=3i=1 10 n, (RfiJ*PLi]*Jfi]),

where n is the number of execution units 424, R[i] is the
number of reservation station 406 entries for execution unit[i]
424, P[i] is the maximum number of source operands speci-
fiable by a microinstruction executable by execution unit[i]
424, and J[i] is the number of execution units 424 that are
capable of forwarding to execution unit[i] 424. Sixth, it may
require additional renaming lookup in the RAT 402 for the
additional source operand. Seventh, it may require the reser-
vation stations 406 to be expanded to handle the additional
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source operand. The additional cost in terms of speed, power,
and real estate might be undesirable.

Same-Source-Destination Optimization Embodiments

Referring now to FIG. 21, a flowchart illustrating operation
of the hardware instruction translator 104 of FIG. 1 to trans-
late conditional ALU instructions 124 according to the
present invention is shown. Generally, the operation of the
hardware instruction translator 104 according to FIG. 21 is
similar in many ways to the operation of the hardware instruc-
tion translator 104 according to FIG. 10, particularly with
respect to the various decisions made at the decision blocks,
which are all therefore similarly numbered.

In FIG. 21, block 1002 of FIG. 10 is replaced with block
2102 in which the conditional ALU instruction 124 encoun-
tered by the hardware instruction translator 104 is different
from that encountered at block 1002 because the conditional
ALU instruction 124 encountered at block 2102 specifies one
of the source registers to be the same register as the destina-
tion register. Advantageously, the hardware instruction trans-
lator 104 is configured to recognize this condition and make
optimizations to the microinstruction 126 it emits. In particu-
lar, the hardware instruction translator 104 decodes the same-
source-destination conditional ALU instruction 124 and
translates it into different sequence of microinstructions 126
than those described with respect to blocks 1024, 1026, 1034,
1036, 1044, 1054, and 1056 (the “ten hundred blocks™) of
FIG. 10. The different sequence of microinstructions 126 are
described in blocks 2124, 2126, 2134, 2136, 2144, 2154 and
2156 (the “twenty-one hundred blocks™) in FIG. 21 that
replace their corresponding ten hundred block. In particular,
the microinstruction 126 sequence in each of the twenty-one
hundred blocks has one less microinstruction 126 than the
microinstruction 126 sequence in its corresponding ten hun-
dred block. More specifically, the twenty-one hundred block
sequences do not include the CMOV or XMOV microinstruc-
tions 126, and the selective writing of either the original
destination register value or the result value is performed by
a conditional ALU microinstruction 126 at the end of the
sequence, as discussed in more detail below.

At block 2124, the hardware instruction translator 104
translates the same-source-destination non-flag-updating,
non-pre-shifting, non-carry-using conditional ALU instruc-
tion 124 into a single microinstruction 126, namely, a condi-
tional ALU operation microinstruction 126 (denoted ALUOP
CC). In the example of block 2124, the conditional ALU
instruction 124 is similar to that described with respect to
block 1024, except that the first source operand is the desti-
nation register (RD). Thus, the conditional ALU instruction
124 specifies a first source register (RD) and a second source
register (R2), an ALU operation (denoted ALUOP) to be
performed on RD and R2 to generate a result, and a destina-
tion register (RD), which is the same as the first source reg-
ister, to which the result is conditionally written. The condi-
tional ALUOP microinstruction 126 specifies the same ALU
operation and condition as the conditional ALU instruction
124. The execution unit 424 that executes the conditional
ALUOP microinstruction 126 receives the old, or current,
value of the destination register RD and receives the second
source operand value R2, according to block 1202, and per-
forms the ALU operation on the two source operands to
generate a result, according to block 1204. The execution unit
424 also receives the condition flags 924 and examines them
to determine whether they satisfy the specified condition,
according to block 1204. If so, the execution unit 424 outputs
the result, according to block 1211, and otherwise outputs the
old destination register value, according to block 1212. The



US 9,274,795 B2

57
execution of the conditional ALUOP microinstruction 126 is
shown in the block diagram of FIG. 28. Flow ends at block
2124.

At block 2126, the hardware instruction translator 104
translates the same-source-destination non-flag-updating,
non-pre-shifting, carry-using conditional ALU instruction
124 into a single microinstruction 126, namely, a carry-using
conditional AL U operation microinstruction 126 (denoted
ALUOPUC CQC). In the example of block 2126, the condi-
tional ALU instruction 124 is similar to that of block 2124,
except that the AL U operation it specifies uses the carry flag,
and is similar to that described with respect to block 1026,
except that the first source operand is the destination register
(RD). The conditional ALUOPUC microinstruction 126 is
similar to that described with respect to block 2124; however,
the ALU operation it specifies uses the carry flag. The execu-
tion of the conditional ALUOPUC microinstruction 126, as
shown in the block diagram of FIG. 27, is similar to the
execution of the conditional ALUOP microinstruction 126 of
block 2124 except that the execution unit 424 uses the carry
flag to perform the AL U operation. Flow ends at block 2126.

At block 2134, the hardware instruction translator 104
translates the same-source-destination non-flag-updating,
pre-shifting, non-carry-using conditional ALU instruction
124 into first and second microinstructions 126, namely: (1) a
shift microinstruction 126; and (2) a conditional ALUOP
microinstruction 126. In the example of block 2134, the con-
ditional ALU instruction 124 is similar to that described with
respect to block 1034, except that the first source operand is
the destination register (RD), and is similar to that described
with respect to block 2124, except the conditional ALU
instruction 124 also specifies a pre-shift operation on the
second source operand (R2) by a shift amount which, in the
example of block 2134, is held in a third source register (R3)
specified by the conditional ALU instruction 124. However, if
the conditional ALU instruction 124 is of the type that speci-
fies the shift amount as a constant within the instruction 124,
then the third source register is not used. The shift microin-
struction 126 is similar to that described with respect to block
1034, and the execution unit 424 executes the shift microin-
struction 126 similar to the manner described with respect to
block 1034 and FIG. 18. Although in the case of block 2134
the carry flag value generated by the shift microinstruction
126 is not used since the conditional ALU instruction 124
specifies that the architectural condition flags 902 are not
updated, in the case of block 2156, for example, the carry flag
value generated by the shift microinstruction 126 is used as
discussed in more detail below. Furthermore, the pre-shift
operation may require the old carry flag to be rotated into the
resulting shifted value; for example, the RRX pre-shift opera-
tion shifts the carry flag into the most significant bit of the
result. In such situations, although not shown in FIG. 21
(except in block 2156), when the execution unit 424 executes
the shift microinstruction 126 it will also read the condition
flags 924 to get the current carry flag value. The conditional
ALUOP microinstruction 126 and its execution is similar to
that described with respect to block 2124; however, it receives
the value of T3 rather than R2 and performs the ALU opera-
tion on R1 and T3 to generate the result written to RD. The
execution of the shift microinstruction 126 and the condi-
tional ALUOP microinstruction 126 is shown in the block
diagram of FIG. 26. Flow ends at block 2134.

At block 2136, the hardware instruction translator 104
translates the same-source-destination non-flag-updating,
pre-shifting, carry-using conditional ALU instruction 124
into first and second microinstructions 126, namely: (1) a
shift microinstruction 126; and (2) a carry-using conditional
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ALUOP microinstruction 126 (denoted ALUOPUC CC). In
the example of block 2136, the conditional ALU instruction
124 is similar to that of block 2134, except that the ALU
operation it specifies uses the carry flag, and is similar to that
described with respect to block 1036, except that the first
source operand is the destination register (RD). The two
microinstructions 126 and their execution are similar to those
described with respect to block 2134; however, the ALUO-
PUC microinstruction 126 also receives the condition flags
924 in order to obtain the current value of the carry flag foruse
in the carry-using ALU operation. The execution of the shift
microinstruction 126 and the conditional ALUOPUC micro-
instruction 126, as shown in the block diagram of FIG. 25, is
similar to the execution of the shift microinstruction 126 and
the conditional ALUOP microinstruction 126 of block 2134
except that the execution unit 424 uses the carry flag to
perform the ALU operation. Flow ends at block 2136.

At block 2144, the hardware instruction translator 104
translates the same-source-destination flag-updating, non-
pre-shifting conditional ALU instruction 124 into a single
microinstruction 126, namely a conditional ALU operation
microinstruction 126 (denoted ALUOP CC). In the example
ofblock 2144, the conditional ALU instruction 124 is similar
to the conditional ALU instruction 124 of block 2124 except
that it updates the architectural condition flags 902, and is
similar to that described with respect to block 1044, except
that the first source operand is the destination register (RD).
The conditional ALU operation microinstruction 126 of
block 2144 and its execution are similar to that of block 2124,
except that the AL U operation microinstruction 126 of block
2144 also updates the architectural condition flags 902, and is
similar to the conditional ALU microinstruction 126 of block
1044, except that its first operand is the destination register
(RD) rather than R1 and its destination register is RD rather
than T2. The execution unit 424 that executes the conditional
ALU microinstruction 126 receives RD and R2 as source
operands, according to block 1202, and performs the speci-
fied ALU operation on the two source operands to generate a
result, according to block 1204. The execution unit 424 also
receives the architectural condition flags 902 and determines
whether they satisfy the specified condition, according to
block 1206. If so, the execution unit 424 outputs the ALU
operation result for writing to RD, according to block 1222 or
1226 depending upon whether the ALU operation is carry-
updating, and otherwise outputs the old value of RD, accord-
ing to block 1216. Furthermore, the execution unit 424 writes
the condition flags register 926, according to block 1216,
1222 or 1226 depending upon whether the condition was
satisfied and whether the ALU operation was carry-updating.
If the condition was not satisfied, the execution unit 424
writes the old condition flag values to the architectural con-
dition flags 902, according to block 1216; whereas, if the
condition was satisfied, the execution unit 424 updates the
architectural condition flags 902 based on the result of the
ALU operation, according to block 1222 for a carry-updating
ALU operation and according to block 1226 for a non-carry-
updating ALU operation. The execution of the conditional
ALUOP microinstruction 126 is shown in the block diagram
of FIG. 22. It is noted that the ALU operation performed by
the conditional ALU operation microinstruction 126 gener-
ated at block 2144 (and at blocks 1054 and 1056) may be an
ALU operation that uses the carry flag (similar to those
described with respect to blocks 1026 and 1036), and since
the microinstruction 126 reads the flags (as indicated by the
RDFLAGS indicator) the execution unit 424 has the carry flag
to perform the carry-using ALLU operation. Flow ends at block
2144.
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At block 2154, the hardware instruction translator 104
translates the same-source-destination flag-updating, pre-
shifting, carry-updating conditional ALU instruction 124 into
first and second microinstructions 126, namely: (1) a shift
microinstruction 126; and (2) a conditional carry-updating
ALU operation microinstruction 126 (denoted CUALUOP
CC). In the example of block 2154, the conditional ALU
instruction 124 is similar to that described with respect to
block 2134, except the conditional ALU instruction 124 also
specifies that the architectural condition flags 902 are to be
updated, and is similar to that described with respect to block
1054, except that the first source operand is the destination
register (RD). The shift microinstruction 126 is similar to that
described with respect to block 1034, and the execution unit
424 executes the shift microinstruction 126 similar to the
manner described with respect to block 1034 and FIG. 18.
The CUALUOP microinstruction 126 and its execution are
similar to the conditional ALU microinstruction 126 of block
2124, except that the CUALUOP microinstruction 126 of
block 2144 also updates the architectural condition flags 902,
and is similar to the conditional ALU microinstruction 126 of
block 1054, except that its first operand is the destination
register (RD) rather than R1 and its destination register is RD
rather than T2. The execution unit 424 that executes the
CUALUOP microinstruction 126 receives RD and T3 as
source operands, according to block 1202, and performs the
specified ALU operation on RD and T3 to generate a result,
according to block 1204. Additionally, the execution unit 424
receives the architectural condition flags 902, according to
block 1202, and determines whether they satisfy the specified
condition, according to block 1206. Furthermore, the execu-
tion unit 424 updates the condition flags register 926, accord-
ing to block 1216 or block 1222, depending upon whether the
condition was satisfied. If the condition was not satisfied, the
execution unit 424 writes the old condition flag values to the
architectural condition flags 902; whereas, if the condition
was satisfied, the execution unit 424 updates the architectural
condition flags 902 based on the result of the ALU operation.
The execution of the shift microinstruction 126 and the con-
ditional ALUOP microinstruction 126 is shown in the block
diagram of FIG. 24. Flow ends at block 2154.

At block 2156, the hardware instruction translator 104
translates the same-source-destination flag-updating, pre-
shifting, non-carry-updating conditional ALU instruction
124 into first and second microinstructions 126, namely: (1) a
shift microinstruction 126; and (2) a conditional non-carry-
updating ALU operation microinstruction 126 (denoted
NCUALUOP CC). In the example of block 2156, the condi-
tional ALU instruction 124 is similar to that described with
respectto block 2154, except the conditional ALU instruction
124 specifies a non-carry-updating ALU operation, and is
similar to that described with respect to block 1056, except
that the first source operand is the destination register (RD).
Consequently, the architectural carry flag 902 is updated with
the pre-shift carry flag value if the condition is satisfied. The
shift microinstruction 126 is similar to that described with
respect to block 2134; however, the shift microinstruction
126 reads and writes the condition flags register 926. More
specifically, the execution unit 424 that executes the shift
microinstruction 126: (1) writes the carry flag value generated
by the pre-shift operation to the PSC bit 906; (2) sets the USE
bit 908 to instruct the conditional NCUALUOP microinstruc-
tion 126 to use the PSC 906 to update the architectural carry
flag 902; and (3) writes the old architectural condition flags
902 back to the condition flags register 926, according to
block 1114, so that the NCUALUOP microinstruction 126
can evaluate the old value of the architectural condition flags
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902 to determine whether they satisfy the specified condition.
The NCUALUOP microinstruction 126 specifies the same
condition specified by the conditional ALU instruction 124.
The execution unit 424 that executes the NCUALUOP micro-
instruction 126 performs the ALU operation on RD and T3 to
generate a result, according to block 1204. Additionally, the
execution unit 424 receives the architectural condition flags
902 and determines whether they satisfy the condition,
according to block 1206. Furthermore, the execution unit 424
writes the condition flags register 926, according to block
1216, 1226 or 1228, depending upon whether the condition
was satisfied and whether the USE bit 908 is set. More spe-
cifically, if the condition was not satisfied, the execution unit
424 writes the old condition flag values to the architectural
condition flags 902, according to block 1216; whereas, if the
condition was satisfied, the execution unit 424 updates the
architectural condition flags 902 based on the result of the
ALU operation, according to block 1226 or 1228, depending
upon whether the USE bit 908 is set. More specifically, the
architectural overflow (V) flag 902 is written with the old
overflow flag value 924 and the N and Z flags are written with
the new values generated based on the result. Additionally,
the architectural carry flag 902 is updated with the pre-shift
carry flag value in the PSC bit 906 if the USE bit 908 so
indicates, according to block 1228, and otherwise is updated
with the old carry flag value 924, according to block 1226.
The execution of the shift microinstruction 126 and the
NCUALUQOP microinstruction 126 is shown in the block
diagram of FIG. 23. Flow ends at block 2156.

There are advantages associated with the fact that the hard-
ware instruction translator 104 makes an optimization when
the conditional ALU instruction 124 specifies the destination
register is the same as one of the source registers and gener-
ates a sequence of with one less microinstruction 126. First, it
may increase the lookahead capability of the microprocessor
100 to exploit instruction level parallelism of the program
being run, which typically increases the utilization of the
execution units 424. The lookahead capability may be
increased because the reduction in the number of microin-
structions 126 means an increase in free slots in the ROB 422
for additional microinstructions 126 associated with subse-
quently translated ISA instructions 124, which potentially
creates a larger pool of microinstructions 126 who are ready
to be issued for execution. Second, because there is a prede-
termined number of slots to which the hardware instruction
translator 104 can emit microinstruction 126 each clock cycle
and, at least in one embodiment the hardware instruction
translator 104 must emit in the same clock cycle all the
microinstructions 126 that implement a given ISA instruction
124, reducing the number of microinstructions 126 into
which a conditional ALU instruction 124 is translated may
also decrease the average number of empty microinstruction
126 slots per clock, which also tends to increase the looka-
head capability of the microprocessor 100 and utilization of
the execution units 424.

Conditional Non-Branch Instruction Prediction

Described above are embodiments for translating a condi-
tional non-branch instruction, namely a conditional AL U
instruction, into microinstructions in a read port-limited pipe-
lined microprocessor. A first microinstruction performs an
ALU operation and writes the result to a temporary register. A
second microinstruction receives both the result from the
temporary register and the current value of the destination
register, and writes the result to the destination register if the
condition was satisfied and writes the current value back to
the destination register if the condition was not satisfied.
Similarly, U.S. Provisional Application 61/473,062 describes
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embodiments for translating a conditional non-branch
instruction, namely a conditional load instruction, into micro-
instructions in a read port-limited pipelined microprocessor.
The instruction translator translates the conditional load
instruction into two microinstructions: (1) a load microin-
struction that also gets the condition code and flags, and if the
condition is not met it does not update architectural state (e.g.,
memory write as side effect of table walk or generate excep-
tion) and loads a dummy value into a temporary register, but
if the condition is met it loads the real value from memory into
the temporary register; and (2) a conditional move that
receives the current value of the destination register and
moves that current value back into the destination register if
the condition is not true, but moves the value from the tem-
porary register into the destination register if the condition is
true.

Although this solution is an improvement over conven-
tional methods, it involves additional overhead, namely a
second microinstruction and latency associated with the
dependency of the second microinstruction on the first micro-
instruction. Additionally, a second slot in other structures of
the microprocessor, such as the microinstruction queue, reor-
der buffer, reservation stations, and execution units is con-
sumed by the second microinstruction. Furthermore, the pres-
ence of the second microinstruction may reduce the average
number of instructions per clock cycle emitted, issued, and
retired by the instruction translator, instruction issue unit, and
instruction retire unit, respectively, and therefore limit the
throughput of the processor.

A potentially higher performance solution, described
herein, is to include a prediction mechanism, akin to branch
prediction methods, that predicts the conditional non-branch
instruction direction, i.e., whether the condition is satisfied or
not satisfied such that the conditional non-branch instruction
is executed or not executed, respectively. This solution
enables the instruction translator to emit a single microin-
struction based on the prediction, rather than multiple micro-
instructions. The microprocessor also includes a mechanism
for recovering from a misprediction.

Both static and dynamic prediction mechanism embodi-
ments are described. The static prediction mechanism is akin
to static branch prediction. The dynamic, or history-based,
prediction mechanism examines the program counter/in-
struction pointer value of the conditional non-branch instruc-
tion when it is fetched from the instruction cache, akin to the
manner in which a branch target address cache (BTAC) oper-
ates.

In the static prediction mechanism, the static predictor
looks at the operation and/or the condition code specified by
the conditional non-branch instruction (e.g., ALU operation
is ADD, condition code is EQUAL) and predicts executed or
not executed based on profiling data. For example, for ALU
operation/condition code combinations in which the empiri-
cal data shows that the conditional non-branch instruction is
executed a sufficiently large percentage of the time, the static
predictor predicts executed, and the instruction translator
emits a single unconditional microinstruction, e.g.:

addcc dst, srcl, src2

The condition codes and flags are provided to the micro-
instruction (hence addcc) so that the execution unit can deter-
mine whether the prediction was correct and if not generate a
misprediction indication.

Conversely, for operation/condition code combinations in
which the empirical data shows that the conditional non-
branch instruction is not executed a sufficiently large percent-
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age of the time, the static predictor predicts not executed, and
the instruction translator emits a single nop microinstruction,
e.g.

nopce

Again, the condition codes and flags are provided to the
microinstruction (hence nopcc) so that the execution unit can
generate a misprediction indication if necessary.

For combinations in which the percentage of executed/not
executed is not sufficiently large enough to warrant static
prediction, the instruction translator reverts to the lower per-
formance multiple microinstruction solution described
above, e.g., the translator emits two microinstructions:

add tmp, srcl, src2

movcc dst, src-dst, tmp // src-dst is the current dst reg value

In the dynamic prediction mechanism, a BTAC-like struc-
ture, referred to herein as the conditional ALU direction cache
(CADC) caches a history of directions of previously-ex-
ecuted conditional non-branch instructions and their program
counter/instruction pointer value and predicts the direction of
a subsequently fetched conditional non-branch instruction
based on the history in the CADC entry that the fetch address
value hits. The CADC provides its prediction to the instruc-
tion translator, which emits microinstructions based on the
prediction as described above with respect to the static pre-
dictor.

The recovery mechanism flushes the pipeline of the con-
ditional non-branch instruction and all instructions after it
(more specifically, microinstructions translated there from),
or at least all instructions that depend either directly or indi-
rectly from it and then replays all the flushed instructions. On
replay of the conditional non-branch instruction, preferably
the translator reverts to emitting the multiple microinstruction
method.

In one embodiment, both the static and dynamic predictors
are implemented, and a history is kept of which predictor has
been more accurate for each program counter/instruction
pointer value. One of the two predictors is dynamically
selected to provide the final prediction based on the history,
according to well-known two-level hybrid branch predictor
methods.

It should be noted that there is a cost (pipeline flush and
replay of the conditional non-branch instruction and the
instructions after it—or at least the instructions that depend
either directly or indirectly from it) associated with mispre-
dicting the conditional non-branch instruction, and that cost is
variable and a function of the application code and/or data set.
Therefore, the conditional non-branch instruction prediction
solution could actually be a lower performance solution for
some application code and/or data set mixes.

A non-branch instruction is defined herein as an instruction
that does not write the program counter of the microproces-
sor. Consequently, the microprocessor fetches and executes
the next sequential instruction after the non-branch instruc-
tion. The program counter is the term used in the ARM
architecture. However, other architectures may use a different
term for the program counter. For example, the x86 ISA uses
the term instruction pointer and other ISAs use instruction
address register. A non-branch instruction is contrasted with a
branch instruction, which writes an address to the program
counter/instruction pointer, which causes the microprocessor
to branch to the address. That is, the microprocessor begins to
fetch instructions from the address written to the program
counter/instruction pointer by the branch instruction and to
execute the fetched instructions. This is in contrast to fetching
and executing the next sequential instruction after the branch
instruction, which is the default operation of the micropro-
cessor and is the operation when encountering a non-branch
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instruction. Examples of conditional non-branch instructions
are conditional ALU instructions and conditional load/store
instructions.

Referring now to FIG. 29, a block diagram illustrating a
microprocessor 100 that makes predictions of non-condi-
tional branch instructions according to the present invention
is shown. The microprocessor 100 of FIG. 29 is similar to the
microprocessor 100 of FIG. 1 and includes similar elements
from FIG. 1 and FIG. 4, including the instruction cache 102,
instruction translator 104, configuration register 122, RAT
402, instruction issue unit 408, execution units 424, and ROB
422. The execution units 424 include one or more units that
execute microinstructions 126 as described herein. Addition-
ally, the execution units 424 execute no-operation (NOP or
no-op) microinstructions 126. A no-operation microinstruc-
tion 126 instructs the execution unit 424 to perform no opera-
tion. More specifically, the no-operation microinstruction
126 described herein also includes a condition, or condition
code, that was specified by the conditional AL U instruction
124 from which the no-operation microinstruction 126 was
translated. The no-operation microinstruction 126 is
described in more detail below. The microprocessor 100 also
includes architectural registers and temporary registers 106
and the flags 926 of FIG. 9.

The microprocessor 100 of FIG. 29 also includes a
dynamic predictor 2932, a static predictor 2936, and a pre-
dictor selector 2934, which are coupled to the instruction
translator 104 and which are used to predict the direction
(executed or not executed) of a conditional ALU instruction
124 (of FIG. 2). The fetch address 134 of FIG. 1 is also
provided to the dynamic predictor 2932 and to the predictor
selector 2934.

The dynamic predictor 2932 and predictor selector 2934
each comprise a cache memory having a plurality of entries.
Each entry caches a memory address of a previously executed
ARM conditional ALU instruction 124. That is, when the
microprocessor 100 retires a conditional ALU instruction
124, the dynamic predictor 2932 and predictor selector 2934
are checked to see whether they contain an entry with the
address of the conditional ALU instruction 124. If so, the
entry is updated based on the correct direction of the condi-
tional ALU instruction 124 indicated on a history update
indicator 2974; if not, an entry is allocated for the conditional
ALU instruction 124 in each of the dynamic predictor 2932
and predictor selector 2934. In one embodiment, the dynamic
predictor 2932 and predictor selector 2934, although shown
as separate entities in FIG. 1, are integrated into a single cache
memory array. That is, each entry in the single array includes
both the direction prediction and selector fields of the
dynamic predictor 2932 and predictor selector 2934, respec-
tively, discussed below.

Each entry in the dynamic predictor 2932 also includes a
field for storing a direction prediction for the conditional
ALU instruction 124 whose address is stored in the entry. The
direction prediction is updated in response to the correct
direction from the retirement of a conditional ALU instruc-
tion 124 at the address. The direction prediction may com-
prise various forms. For example, the direction prediction
comprises a single bit which simply indicates executed or not
executed. The bit is set to one value if the direction was
executed and set to the other value if the direction was not
executed. For another example, the direction prediction com-
prises a multi-bit counter that is incremented in a saturating
manner if the direction was executed and decremented in a
saturating manner if the direction was not executed. A counter
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value greater than the median value predicts executed and a
counter value less than the median value predicts not
executed.

Each time a block of instructions is fetched from the
instruction cache 102, the fetch address 134 is provided to the
dynamic predictor 2932 which looks up the fetch address 134
to determine whether or not it matches a valid tag of its cache
memory array, i.e., hits or misses. If the fetch address 134
misses, the dynamic predictor 2932 outputs a value that indi-
cates no prediction (NP) on its dynamic prediction output
2982. If the fetch address 134 hits, the dynamic predictor
2932 outputs a value on the dynamic prediction output 2982
that indicates either an executed (F) direction or a not
executed (NE) direction based on the direction prediction
field value stored in the matching entry. In one embodiment,
even if the fetch address 134 hits, the dynamic predictor 2932
may output a value on the dynamic prediction output 2982
that indicates NP, for example if the history indicates that
there is an almost equal likelihood that the conditional AL U
instruction 124 will be executed as not executed, i.e., an
almost equal likelihood that the condition will be satisfied as
not satisfied. The direction prediction 2982 is provided to the
instruction translator 104.

Each entry in the predictor selector 2934 also includes a
field for storing a selector for the conditional ALU instruction
124 whose address is stored in the entry. The selector indi-
cates whether the dynamic predictor 2932 or the static pre-
dictor 2936 is more likely to correctly predict the direction of
the conditional ALU instruction 124. The selector is updated
in response to the retirement of a conditional ALU instruction
124 at the address, in particular, based on the correct direction
and information indicated on the history update indicator
2974 indicating the prediction made by each of the dynamic
predictor 2932 and static predictor 2936. The selector may
comprise various forms. For example, the selector comprises
a single bit which simply indicates the dynamic predictor
2932 or static predictor 2936. The bit is set to one value if the
dynamic predictor 2932 correctly predicted the direction and
set to the other value if the static predictor 2936 correctly
predicted the direction. If both correctly predicted the direc-
tion, then the predictor that was selected to make the predic-
tion is retained. For another example, the selector comprises
a multi-bit counter that is incremented in a saturating manner
if the dynamic predictor 2932 correctly predicted the direc-
tion and decremented in a saturating manner if the static
predictor 2936 correctly predicted the direction. If both cor-
rectly predicted the direction, then the counter value is not
updated. A counter value greater than the median value pre-
dicts the dynamic predictor 2932 will correctly predict the
direction and a counter value less than the median value
predicts the static predictor 2936 will correctly predict the
direction.

Each time a block of instructions is fetched from the
instruction cache 102, the fetch address 134 is provided to the
predictor selector 2934 which looks up the fetch address 134
to determine whether or not it matches a valid tag of its cache
memory array, i.e., hits or misses. If the fetch address 134
misses, the predictor selector 2934 outputs a value that indi-
cates no prediction (NP) on its prediction selection output
2984. It the fetch address 134 hits, the predictor selector 2934
outputs a value on the prediction selection output 2984 that
indicates either the dynamic predictor 2932 (D) (i.e., the
dynamic predictor 2932) or the static predictor 2936 (S)
based on the selector field value stored in the matching entry.
In one embodiment, even if the fetch address 134 hits, the
predictor selector 2934 may output a value on the selection
output 2984 that indicates NP, for example if the history
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indicates that neither the dynamic predictor 2932 nor the
static predictor 2936 has a sufficiently high likelihood of
predicting correctly. The prediction selection 2984 is pro-
vided to the instruction translator 104.

The static predictor 2936 receives the instruction 124
fetched from the instruction cache 102 and analyzes the con-
dition code and/or the particular AL U function specified by
the instruction 124 to make a prediction of the direction of the
conditional ALU instruction 124. The static predictor 2936
includes in essence a lookup table that includes an E, NE, or
NP indication associated with each of the possible condition
code/ALU function combinations. Preferably, the E, NE, or
NP indications are configured in the static predictor 2936
based on empirical data taken from the execution of programs
written for the ARM instruction set architecture, as discussed
above. The static prediction 2986 is provided to the instruc-
tion translator 104. In one embodiment, the static predictor
2936 is integrated within the instruction translator 104.

The instruction translator 104 uses the predictions 2982/
2984/2986 to translate a conditional ALU instruction 124 into
microinstructions 126, as described in more detail below with
respect to FIGS. 30 and 31. The predictions 2982/2984/2986
are also piped down the microprocessor 100 pipeline along
with the conditional ALU instruction 124 for use by the
execution units 424 to determine whether each predictor
2932/2934/2936 correctly or incorrectly predicted the direc-
tion of the conditional ALU instruction 124. In one embodi-
ment, in recognition of the fact that the instruction block
fetched from the instruction cache 102 each clock cycle may
include multiple conditional ALU instructions 124, the
dynamic predictor 2932 and predictor selector 2934 and static
predictor 2936 each generate multiple predictions 2982/
2984/2986 cach clock cycle.

In one embodiment, the microarchitecture of the micropro-
cessor 100 is similar in many ways to a microarchitecture of
the VIA Nano™ Processor manufactured by VIA Technolo-
gies, Inc., of Taipei, Taiwan, but modified to support the ARM
instruction set architecture. Advantageously, the VIA Nano
processor microarchitecture is a high performance out-of-
order execution superscalar microarchitecture that supports
the x86 instruction set architecture and which is modified as
described herein to additionally support the ARM microar-
chitecture, and more particularly, the ARM conditional ALU
instructions 124, which is described in more detail below with
respect to FIG. 2.

The RAT 402 indicates that a conditional move microin-
struction 3046 (described below with respect to FIG. 30) is
dependent upon the result of an AL U microinstruction 3044
(described below with respect to FIG. 30), both of which are
emitted by the instruction translator 104 when it translates a
conditional ALU instruction 124 under certain conditions,
namely when no prediction is available for a conditional AL U
instruction 124 or when a conditional ALU instruction 124
was mispredicted and is replayed, as described below.

The temporary registers 106 store non-architectural state
of the microprocessor 100. The temporary registers 106 may
be used by the microarchitecture to temporarily store inter-
mediate values as needed to implement the instructions of the
instruction set architectures. More specifically, the microin-
structions emitted by the instruction translator 104 may
specify the temporary registers 106 as source and/or destina-
tion operand locations. In particular, the ALU microinstruc-
tion 3044 of FIG. 30 may specity a temporary register 106 as
its destination register, and the associated conditional move
microinstruction 3046 specifies the same temporary register
106 as one of its source registers, as described in more detail
below.
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At least one of the execution units 424 includes an arith-
metic logic unit (ALU) (not shown) configured to execute
various microinstructions, including the ALU microinstruc-
tion 3044 and unconditional ALU with CC (condition code)
microinstruction 3045 of FIG. 30. Additionally, at least one of
the execution units 424 is configured to execute the condi-
tional move microinstruction 3046 and NOP with CC micro-
instruction 3047 of FIG. 30. In the case of a conditional move
microinstruction 3046, an unconditional ALU with CC
microinstruction 3045, or a NOP with CC microinstruction
3047 of FIG. 30, the execution unit 424 receives the condition
code value 224, 254, or 274 (see F1G. 30) as an input and the
current value of the flags 926. The execution unit 424 deter-
mines whether the value of the flags 926 satisfies the condi-
tion specified by the condition code 224, 254, or 274. Thus,
the execution unit 424 determines the correct direction of the
conditional ALU instruction 124 and additionally whether the
dynamic predictor 2932 and/or static predictor 2936 mispre-
dicted the direction of the conditional ALU instruction 124,
which is indicated on a misprediction indication 2976 pro-
vided to the ROB 422. Additionally, the execution unit 424
determines whether the predictor selector 2934 selected the
predictor 2932/2936 that correctly predicted the direction.
The determinations are used to update the dynamic predictor
2932 and predictor selector 2934. In the case of a conditional
move microinstruction 3046, the execution unit 424 moves
the value ofthe temporary register 106 specified by the source
register 1 field 226 into the architectural register 106 specified
by the destination register field 232 of FIG. 30 if the condition
is satisfied and otherwise moves the value of the architectural
register 106 specified by the source register 2 field 228, which
is the original destination register value, into the architectural
register 106 specified by the destination register field 232 if
the condition is not satisfied.

The ROB 422 receives the results 128 from the execution
units 424, which includes an indication of whether the direc-
tion of a conditional ALU instruction 124 was mispredicted.
If the direction was not mispredicted, the ROB 422 updates
the architectural state of the microprocessor 100, namely the
flags 926 and the architectural register 106 specified by the
destination register field 208 of the conditional ALU instruc-
tion 124 (which is reflected in the destination register field
232 and destination register field 258 of the conditional move
microinstruction 3046 and unconditional ALU with CC
microinstruction 3045, respectively, of FIG. 30), with the
results generated from the performance of the ALU operation
specified by the opcode 202 of the conditional AL U instruc-
tion 124 upon the source operands specified by the source
register 1 and source register 2 fields 206. However, if the
direction was mispredicted, the ROB 422 generates a true
value on a mispredict indicator 2976. The mispredict indica-
tor 2976 is provided to the instruction translator 104 so that
upon replay of the mispredicted conditional ALLU instruction
124 the instruction translator 104 knows to revert to the mul-
tiple microinstruction technique according to a no prediction
(NP) regime. The mispredict indicator 2976 is also provided
to other relevant pipeline units such as the RAT 402 and
instruction issue unit 408 so that they can flush microinstruc-
tions as needed. The ROB 422 also generates the history
update values 2974 to update the dynamic predictor 2932 and
predictor selector 2934 based on the conditional ALU instruc-
tion 124 results, namely the direction prediction results.

Referring now to FIG. 30, a block diagram illustrating the
translation of a conditional ALU instruction 124 by the
instruction translator 104 of FIG. 29 according to the present
invention is shown. As described herein, the instruction trans-
lator 104 of FIG. 29 translates the conditional ALU instruc-
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tion 124 into three different possible sets of microinstructions
depending upon the circumstances in which the instruction
translator 104 is translating the conditional ALU instruction
124, namely whether the conditional ALU instruction 124 is
predicted executed (E), predicted not executed (NE), or not
predicted (NP), as shown in FIG. 30. In one embodiment, the
conditional ALU instruction 124 is a conditional ALU
instruction defined by the ARM instruction set architecture.

The conditional ALU instruction 124 includes an opcode
field 202, a condition code field 204, source register 1 and
source register 2 fields 206, and a destination register field
208. The opcode field 202 includes a value that differentiates
the conditional ALU instruction 124 from other instructions
in the instruction set architecture.

The condition code field 204 specifies a condition upon
which the destination register will be selectively updated with
the result of an ALLU microinstruction 3044 (described below)
depending upon whether the current value of the flags 926
satisfies the condition. According to one embodiment com-
patible with the ARM instruction set architecture, the condi-
tion code field 204 is specified in the upper four bits (i.e., bits
[31:28]) of the conditional ALU instruction 124 to enable the
coding of sixteen different possible values according to Table
3 below. With respect to the architecture version-dependent
value (0b1111), the instruction is unpredictable according to
one architecture version and is used to indicate an uncondi-
tional instruction extension space in other versions.

TABLE 3

field

204

value mnemonic meaning flags 926 value

0000 EQ Equal Z set

0001 NE Not Equal Z clear

0010 CS/HS Carry set/unsigned C set

higher or same

0011 CC/LO Carry clear/unsigned C clear

lower

0100 MI Minus/negative N set

0101 PL Plus/positive or zero N clear

0110 VS Overflow V set

0111 VC No overflow V clear

1000 HI Unsigned higher C set and Z clear

1001 LS Unsigned lower or C clear or Z set

same

1010 GE Signed greater than N set and V set, or

or equal N clear and V clear
N==V)

1011 LT Signed less than N set and V clear,
or N clear and V
set (N 1=V)

1100 GT Signed greater than Z clear, and either
N set and V set, or
N clear and V clear
(Z==0,N==V)

1101 LE Signed less than or Z set, or N set and

equal V clear, or N clear
and V set (Z ==
orN!=V)

1110 AL Always —

(unconditional)
Architecture version-
dependent

1111

The source register 1 and source register 2 fields 206
specify immediate values and the architectural registers 106
holding the input operands upon which the ALU operation
(e.g., add, subtract, multiply, divide, AND, OR, etc.) specified
by the opcode 202 will be performed to generate a result that
will be conditionally loaded into the architectural register 106
specified by the destination register field 208 if the condition
is satisfied.
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In the NP case, the instruction translator 104 translates the
conditional ALU instruction 124 into an ALU microinstruc-
tion 3044 and a conditional move microinstruction 3046 for
execution by the execution units 424.

The ALU microinstruction 3044 includes an opcode field
212, source register 1 and source register 2 fields 216, and a
destination register field 218. The opcode field 212 includes a
value that differentiates the ALU microinstruction 3044 from
other microinstructions in the microinstruction set architec-
ture of the microprocessor 100. The ALU function specified
by the opcode 202 of the conditional ALU instruction 124 is
conveyed in the opcode field 212 ofthe AL U microinstruction
3044. The source register 1 and source register 2 fields 216
specify immediate values and the architectural registers 106
holding the operands upon which the ALLU operation speci-
fied by the opcode 212 will be performed to generate a result
that will be loaded into the architectural or temporary register
106 specified by the destination register field 218, and the
instruction translator 104 populates the source register 1 and
source register 2 fields 216 of the AL U microinstruction 3044
with the same values as the source register 1 and source
register 2 fields 206 of the conditional ALU instruction 124
when it translates the conditional ALU instruction 124 in the
NP case. When the instruction translator 104 translates the
conditional ALU instruction 124, it populates the destination
register field 218 to specify a temporary register 106 to
receive the result of the ALU operation.

The conditional move microinstruction 3046 includes an
opcode field 222, a condition code field 224, a source register
1 field 226, a source register 2 field 228, and a destination
register field 232. The opcode field 222 includes a value that
differentiates the conditional move microinstruction 3046
from other microinstructions in the microinstruction set
architecture of the microprocessor 100. The condition code
field 224 specifies a condition upon which the move operation
will be selectively performed depending upon whether the
current value of the flags 926 satisfies the condition in the
same sense as the condition code field 204 of the conditional
ALU instruction 124. Indeed, the instruction translator 104
populates the condition code field 224 of the conditional
move microinstruction 3046 with the same value as the con-
dition code field 204 of the conditional ALU instruction 124
when it translates the conditional ALU instruction 124. The
source register 1 field 226 specifies an architectural register
106 or temporary register 106 from which a first source oper-
and will be provided to the conditional move microinstruction
3046, and the source register 2 field 228 specifies an archi-
tectural register 106 or temporary register 106 from which a
second source operand will be provided to the conditional
move microinstruction 3046. When the instruction translator
104 translates the conditional ALU instruction 124, it popu-
lates the source register 1 field 226 with the same value with
which it populates the destination register field 218 of the
ALU microinstruction 3044, and the instruction translator
104 populates the source register 2 field 228 with the same
value as the destination register field 208 of the conditional
ALU instruction 124, i.e., the source register 2 field 228
causes the conditional move microinstruction 3046 to receive
the current value of the destination register so that the current
value may be written back to the destination register if the
condition is not satisfied. The instruction translator 104 popu-
lates the destination register field 232 with the same value as
the destination register field 208 of the conditional AL U
instruction 124 so that either the current value of the destina-
tion register specified by the conditional ALU instruction 124
(i.e., the value prior to execution of the conditional ALU
instruction 124) is loaded into the destination register if the
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condition is not met or the value from the temporary register
that holds the result of the ALU microinstruction 3044 is
loaded into the destination register if the condition is met.

In one embodiment, in the NP case, the instruction trans-
lator 104 translates conditional ALU instructions 124 into the
microinstructions 126 of the embodiments described above
with respect to FIGS. 10 through 28. As described, the set of
microinstructions 126 varies depending upon the character-
istics of the conditional AL U instruction 124, such as whether
one of the source registers is the destination register, whether
it is a flag-updating instruction, whether it specifies a pre-
shift, whether it uses the current carry flag value, and whether
the ALU operation updates the carry flag in the flag-updating
pre-shifting case. In particular, in some cases of a pre-shifting
conditional ALU instruction 124, the set of microinstructions
126 may include three microinstructions 126 as shown in
FIG. 10 rather than the two microinstructions 126 shown in
FIG. 30. Additionally, in the case of a conditional ALU
instruction 124 that specifies one of the source registers is the
destination register, the set of microinstructions 126 may
include one less microinstruction 126 as observed by com-
paring FIG. 21 with FIG. 10. More specifically, the set does
not include a conditional move microinstruction 126, but
instead the conditional move functionality is provided by a
conditional ALU microinstruction 126. Consequently, in
some cases the set includes a single microinstruction 126 as
shown in FIG. 21 rather than the two microinstructions 126
shown in FIG. 30. Furthermore, in the case of a flag-updating
conditional ALU instruction 124, the set of microinstructions
126 may include a conditional move microinstruction 126
that is slightly different than the conditional move microin-
struction 126 shown in FIG. 30. In particular, to determine
whether the condition is satisfied, the conditional move
microinstruction 126 (CMOV) of blocks 1044, 1054 and
1056 of FIG. 10 examines a non-architectural flag updated by
a previous microinstruction 126 in the set of microinstruc-
tions 126 based on whether the architectural flags satisfy the
condition, in contrast to the conditional move microinstruc-
tion 126 of FIG. 30 which examines the architectural flags to
determine whether the condition is satisfied. Finally, whereas
the ALU microinstruction 126 of FIG. 30 is an unconditional
ALU microinstruction 126, in some cases the ALU microin-
structions 126 of FIGS. 10 and 21 may be conditional ALLU
microinstructions 126.

In the E case, the instruction translator 104 translates the
conditional ALU instruction 124 into an unconditional ALU
with CC microinstruction 3045 for execution by the execu-
tion units 424. The unconditional ALU with CC microinstruc-
tion 3045 includes an opcode field 252, condition code field
254, source register 1 and source register 2 fields 256, and a
destination register field 258. The opcode field 252 includes a
value that differentiates the unconditional ALU with CC
microinstruction 3045 from other microinstructions in the
microinstruction set architecture of the microprocessor 100.
The ALU function specified by the opcode 252 of the condi-
tional ALU instruction 124 is conveyed in the opcode field
252 of the unconditional ALU with CC microinstruction
3045. The source register 1 and source register 2 fields 256
specify immediate values and the architectural registers 106
holding the operands upon which the ALU operation speci-
fied by the opcode 252 will be performed to generate a result
that will be loaded into the architectural or temporary register
106 specified by the destination register field 258, and the
instruction translator 104 populates the source register 1 and
source register 2 fields 256 of the unconditional ALU with CC
microinstruction 3045 with the same values as the source
register 1 and source register 2 fields 206 of the conditional
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ALU instruction 124 when it translates the conditional AL U
instruction 124 in the E case. The instruction translator 104
populates the condition code field 254 of the unconditional
ALU with CC microinstruction 3045 with the same value as
the condition code field 204 of the conditional ALU instruc-
tion 124 when it translates the conditional AL U instruction
124. The condition code 224 is used by the execution unit 424
to determine whether a misprediction of the direction of the
associated conditional ALU instruction 124 was made. The
instruction translator 104 populates the destination register
field 258 with the same value as the destination register field
208 of'the conditional ALU instruction 124 when it translates
the conditional ALU instruction 124. Thus, the unconditional
ALU with CC microinstruction 3045 is an unconditional
microinstruction in that it is executed regardless of whether
the condition is satisfied since its associated conditional AL U
instruction 124 was predicted executed. However, the uncon-
ditional AL U with CC microinstruction 3045 is speculative
similar to a predicted branch instruction since the E predic-
tion is scrutinized and if found to be a misprediction, the
architectural register 106 specified by the destination register
field 258 will not be updated with the ALU result but will
instead be flushed and the associated conditional ALU
instruction 124 will be replayed, this time with no prediction.
In contrast, if the E prediction was correct, then the architec-
tural register 106 specified by the destination register field
258 may be updated with the AL U result. In one embodiment,
in the E case, in addition to the unconditional ALU with CC
microinstruction 126 of FIG. 30, when the conditional ALU
instruction 124 specifies a pre-shift, as described above with
respect to FIGS. 10 through 28, the instruction translator 104
additionally translates the conditional ALU instruction 124
into a shift microinstruction 126 that precedes the uncondi-
tional ALU with CC microinstruction 126. The shift micro-
instruction 126 is similar to the shift microinstruction 126
described above with respect to block 1034 of FIG. 10, for
example, and the unconditional AL U with CC microinstruc-
tion 126 of FIG. 30 is modified to specify as its source one
operand register the temporary register that is the destination
register of the shift microinstruction 126. The shift microin-
struction 126 will be flushed (in addition to the unconditional
ALU with CC microinstruction 126) at block 3134 of FIG. 31
(described below) if there was a misprediction.

In the NE case, the instruction translator 104 translates the
conditional ALU instruction 124 into a NOP with CC micro-
instruction 3047 for execution by the execution units 424. The
NOP with CC microinstruction 3047 includes an opcode field
272 and a condition code field 274. The opcode field 272
includes a value that differentiates the NOP with CC micro-
instruction 3047 from other microinstructions in the micro-
instruction set architecture of the microprocessor 100. The
instruction translator 104 populates the condition code field
274 of the NOP with CC microinstruction 3047 with the same
value as the condition code field 204 of the conditional AL U
instruction 124 when it translates the conditional ALU
instruction 124. The condition code 274 is used by the execu-
tion unit 424 to determine whether a misprediction of the
direction of the associated conditional ALU instruction 124
was made. The NOP with CC microinstruction 3047 per-
forms no operation other than to enable the execution unit 424
to scrutinize the prediction of the direction of the conditional
ALU instruction 124.

Referring now to FIG. 31, a flowchart illustrating operation
of'the microprocessor 100 of FIG. 29 to execute a conditional
ALU instruction 124 of FIG. 30 according to the present
invention is shown. Flow begins concurrently at blocks 3102,
3104, and 3106.
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At block 3102, a block of instructions containing a condi-
tional ALU instruction 124 of FIG. 30 is fetched from the
instruction cache 102 at the fetch address 134 of FIG. 29.
Flow proceeds from block 3102 to block 3108.

At block 3104, the dynamic predictor 2932 looks up the
fetch address 134 and provides the dynamic prediction 2982
to the instruction translator 104 of FIG. 29. Flow proceeds
from block 3104 to block 3108.

At block 3106, the predictor selector 2934 looks up the
fetch address 134 and provides the predictor selection 2984 of
FIG. 29 to the instruction translator 104. Flow proceeds from
block 3106 to block 3108.

At block 3108, the static predictor 2936 receives the con-
ditional AL U instruction 124, evaluates it, and provides the
static prediction 2984 of FIG. 29 to the instruction translator
104. Flow proceeds to block 3112.

Atblock 3112, the instruction translator 104 encounters the
conditional ALU instruction 124 and receives the predictions
2982/2984/2986 from the dynamic predictor 2932, predictor
selector 2934, and static predictor 2936, respectively, and
generates a prediction of the direction of the conditional ALU
instruction 124 based on them. Flow proceeds to decision
block 3114.

At decision block 3114, the instruction translator 104
determines whether it predicted at block 3112 the conditional
ALU instruction 124 will be executed (E). If so, flow proceeds
to block 3116; otherwise, flow proceeds to decision block
3118.

At block 3116, the instruction translator 104 emits the
unconditional ALU with CC microinstruction 3045 of FIG.
30 according to the E case. Flow proceeds to block 3126.

At decision block 3118, the instruction translator 104
determines whether it predicted at block 3112 the conditional
ALU instruction 124 will be not executed (NE). If so, flow
proceeds to block 3122; otherwise, flow proceeds to block
3124.

Atblock 3122, the instruction translator 104 emits the NOP
with CC microinstruction 3047 of FIG. 30 according to the
NE case. Flow proceeds to block 3126.

Atblock 3124, the instruction translator 104 emits the ALU
microinstruction 3044 and conditional move microinstruc-
tion 3046 of F1G. 30 according to the NP case. Flow proceeds
to block 3126.

At block 3126, the execution units 424 execute the micro-
instructions 126 emitted by the instruction translator 104 at
block 3116, 322, or 324. In the NP case, an execution unit 424
executes the ALU microinstruction 3044 by performing the
ALU function specified in the opcode field 212 on the source
operands specified in field 216 to generate a result which is
output on the result bus 128 and written to the ROB entry
allocated for the ALU microinstruction 3044 in hopes of
subsequently being written to the temporary register 106
specified in field 218. Once the ALU microinstruction 3044
result is available, the conditional move microinstruction
3046 can be issued to an execution unit 424 which determines
whether the flags 926 satisfy the condition specified by the
condition code 224. If so, the result of the ALU microinstruc-
tion 3044 (received either from the forwarding bus or from the
temporary register 106) is output on the result bus 128 and
written to the ROB entry allocated for the conditional move
microinstruction 3046 in hopes of subsequently being written
to the architectural register 106 specified by field 232. How-
ever, if the condition is not satisfied, the original value of the
architectural register 106 specified by the source register 2
field 228 (i.e., the architectural register 106 specified by the
destination register field 208 of the conditional ALU instruc-
tion 124) is output on the result bus 128 and written to the
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ROB entry allocated for the conditional move microinstruc-
tion 3046 in hopes of subsequently being written to the archi-
tectural register 106 specified by field 232. The execution unit
424 also indicates a correct prediction to the ROB 422 (be-
cause the instruction translator 104 generated the AL U micro-
instruction 3044 and the conditional move microinstruction
3046 in response to the NP prediction). That is, in the NP case
a misprediction will never occur because there was no pre-
diction. In the E case, an execution unit 424 executes the
unconditional ALU with CC microinstruction 3045 by per-
forming the AL U function specified in the opcode field 252 on
the source operands specified in field 256 to generate a result
which is output on the result bus 128 and written to the ROB
entry allocated for the unconditional ALU with CC microin-
struction 3045 in hopes of subsequently being written to the
architectural register 106 specified in field 258. The execution
unit 424 also determines whether the flags 926 satisfy the
condition specified by the condition code 254 and accord-
ingly provides an indication to the ROB 422. More specifi-
cally, the execution unit 424 indicates a misprediction to the
ROB 422 only when the flags 926 do not satisfy the condition
specified by the condition code 254 (because the instruction
translator 104 generated the unconditional ALU with CC
microinstruction 3045 in response to the E prediction), and
otherwise indicates a correct prediction. In the NE case, an
execution unit 424 executes the NOP with CC microinstruc-
tion 3047 by performing no operation. Additionally, the
execution unit 424 determines whether the flags 926 satisfy
the condition specified by the condition code 274 and accord-
ingly provides an indication to the ROB 422. More specifi-
cally, the execution unit 424 indicates a misprediction to the
ROB 422 only when the flags 926 satisfy the condition speci-
fied by the condition code 254 (because the instruction trans-
lator 104 generated the NOP with CC microinstruction 3047
in response to the NE prediction), and otherwise indicates a
correct prediction. Flow proceeds to decision block 3128.

Atdecision block 3128, the ROB 422, based on the mispre-
diction indication 2976 received from the execution unit 424,
determines whether the direction of the conditional ALU
instruction 124 was mispredicted. If so, flow proceeds to
block 3134; otherwise, flow proceeds to block 3132.

Atblock 3132, the ROB 422 updates the architectural state
of the microprocessor 100, namely the architectural registers
106 and flags 926, with the results of the conditional ALLU
instruction 124. More specifically, the ROB 422 updates the
architectural state when the conditional move microinstruc-
tion 3046 (in the NP case), the unconditional ALU with CC
microinstruction 3045 (in the E case), or the NOP with CC
microinstruction 3047 (in the NE case) becomes the oldest
microinstruction in the microprocessor 100, since the ROB
422 must retire instructions in program order. Flow proceeds
to block 3136.

At block 3134, the ROB 422 generates a true value on the
mispredict indicator 2976 to cause the microinstructions gen-
erated from translation of the conditional ALU instruction
124 to be flushed and all microinstructions dependent upon
them. Additionally, generation of a true value on the mispre-
dict indicator 2976 causes the conditional ALU instruction
124 to be replayed. That is, the conditional ALU instruction
124 is re-translated by the instruction translator 104, this time
according to the NP regime of block 3124. In an alternate
embodiment, on replay of the conditional ALU instruction
124, the instruction translator 104 inverts the incorrect pre-
diction and the instruction translator 104 translates based on
the inverted prediction. That is, if the misprediction was E,
then the instruction translator 104 translates according to the
NE regime on replay, and if the is misprediction was NE, then
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the instruction translator 104 translates according to the E
regime on replay. However, it is noted that the alternate
embodiment may be prone to causing a livelock condition.
Flow proceeds to block 3136.

At block 3136, the ROB 422 provides the appropriate
values on the history update output 2974 to the dynamic
predictor 2932 and predictor selector 2934 to update them
based on the correct direction evaluated by the execution unit
424 and the piped-down prediction information 2982/2984/
2986. Flow ends at block 3136.

As may be observed from the foregoing, the fact that the
microprocessor 100 of the present invention translates a con-
ditional AL U instruction 124 into a single microinstruction,
rather than multiple microinstructions, in some cases—
namely when it is able to predict the direction—may provide
important advantages.

First, there is one or more less microinstructions to take up
extra instruction slots in resources of the out-of-order execu-
tion microprocessor 100, such as the RAT 402, reorder buffer,
reservation station (not shown), and execution units 424,
which may enables these resources to be smaller and poten-
tially less complex and power consuming than they otherwise
would be.

Second, the average number of program instructions of the
instruction set architecture (e.g., ARM instructions) that the
instruction translator 104 translates per clock cycle may be
increased. Assume for example the instruction translator 104
is capable of translating up to three ARM instructions per
clock cycle, but is only capable of emitting up to three micro-
instructions per clock and has the further limitation that it
must emit all the microinstructions associated with the ARM
instruction in the same clock cycle, i.e., the instruction trans-
lator 104 is not capable of emitting one microinstruction
associated with an ARM instruction in a first clock cycle and
the second microinstruction associated with the ARM
instruction in the next clock cycle. Assume the following
ARM instruction sequence, in which CAI is a conditional
ALU instruction 124 and the “Rx” values are general purpose
registers:

CAIEQRI,R2,R3

CAINE R4, R5,R6

CAICS R7,R8,R9

In a processor in which the predictors 2932/2934/2936 are
not present (or in which they make no direction prediction),
the instruction translator 104 must take three clock cycles to
translate the three CAI instructions. However, advanta-
geously, in a case in which the predictors 2932/2934/2936
make a direction prediction, the instruction translator 104 can
translate all three CAI instructions in a single clock cycle.
Furthermore, this benefit may be realized in other examples
of instruction mixes with non-CAl instructions, namely with
other ARM instructions. For example, assume an ARM
instruction D that is translated into two microinstructions is
followed by a CAl instruction whose direction is predicted by
the predictors 2932/2934/2936 which is followed by an ARM
instruction E that is translated into two microinstructions
which is followed by an ARM instruction F that is translated
into a single microinstruction. In such a case, the instruction
translator 104 can translate ARM instruction D and the CAI
instruction in a single clock cycle, and then translate the ARM
instructions E and F during the next clock cycle, i.e., four
ARM instructions intwo clock cycles. In contrast, without the
capability described in the embodiments herein, the instruc-
tion translator 104 would require three clock cycles to trans-
late the four instructions. Similar advantages may be appre-
ciated within the instruction issue unit 408 and ROB 422.
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Third, the latency of a conditional ALU instruction 124
may be reduced due to the absence of the second microin-
struction in cases where the predictors 2932/2934/2936 pre-
dict the direction such that the instruction translator 104 is
enabled to emit a single microinstruction.

Fourth, the absence of the extra microinstruction in the
reorder buffer and/or reservation stations may increase the
lookahead capability of the processor, thereby potentially
increasing the ability of the processor to exploit the instruc-
tion level parallelism of the program being executed by the
microprocessor 100, thereby potentially increasing the utili-
zation of the execution units 424, and thereby potentially
improving the throughput of the microprocessor 100. More
specifically, the lack of the second microinstruction makes
more room in the reorder buffer for microinstructions. This is
an advantage because it potentially creates a larger pool of
microinstructions that can be dispatched for execution to the
execution units 424. A microinstruction cannot be dispatched
for execution until it is “ready,” i.e., until all of its source
operands from the previous microinstructions are available.
Thus, the larger the pool of microinstructions at which the
microprocessor 100 may look to find ready microinstruc-
tions, the more likely it is to find them, and consequently the
more likely it is to keep the execution units 424 utilized. This
is commonly referred to as the lookahead capability of a
microprocessor, which exploits more fully the instruction
level parallelism of the program being executed by the micro-
processor 100. Greater lookahead capability typically
increases the utilization of the execution units 424. Thus, the
present microprocessor 100 potentially advantageously
increases the lookahead capability by translating a condi-
tional ALU instruction 124 into a single microinstruction,
rather than multiple microinstructions.

Although embodiments are described in which an ARM
instruction set architecture conditional ALU instruction is
supported on a microarchitecture that also supports an x86
instruction set architecture, it should be noted that other
embodiments are contemplated in which a conditional ALU
instruction from instruction set architectures other than ARM
are supported; furthermore, it should be noted that other
embodiments are contemplated in which there is no pre-
existing microarchitecture or the pre-existing microarchitec-
ture supports an instruction set architecture other than the x86
instruction set architecture; finally, it should be understood
that described herein is the broad notion of a processor that
supports a conditional AL U instruction of an instruction set
architecture by predicting the direction of the conditional
ALU instruction early in the pipeline prior to its execution,
preferably in a manner similar to branch prediction tech-
niques, and determining the stream of fetched instructions
and emitting different sequences of microinstructions based
on the direction prediction, or lack thereof. Furthermore,
although embodiments are described that include both a
dynamic predictor and a static predictor, embodiments are
contemplated that employ only a static predictor or embodi-
ments that employ only a dynamic predictor; additionally,
embodiments are contemplated in which multiple dynamic
and/or static predictors are employed and the predictor selec-
tor selects from among the multiple dynamic and static pre-
dictors. Still further, embodiments are contemplated in which
the dynamic predictor is integrated within a branch predictor
array, such as a branch target address cache. A disadvantage
of such an embodiment is that it wastes the storage space
within each entry used to store the target address of a branch
instruction since this is not needed for predicting a target
address for a conditional AL U instruction. A possible advan-
tage may be that the storage space within the integrated cache
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memory is more efficiently used and/or justification may exist
for an integrated array that has a larger number of entries than
the sum of the number of entries in an embodiment with
distinct arrays, although the potential for interference or
thrashing between branch instructions and conditional AL U
instructions may occur depending on the instruction mix in
the program.

Although embodiments have been described with respect
to conditional non-branch instructions that are conditional
ALU instructions, other embodiments are contemplated in
which other types of conditional non-branch instructions are
predicted by the predictors. For example, conditional load
instructions may be predicted. If E is predicted, the instruc-
tion translator generates an unconditional load with CC
microinstruction. The unconditional load with CC microin-
struction includes the condition specified by the conditional
load instruction to enable the execution pipeline to detect a
misprediction. If the execution pipeline detects a mispredic-
tion, it refrains from performing any architectural state-up-
dating actions, such as a page table walk that updates memory
if the load causes a TLB miss, or generating an architectural
exception ifthe load creates an exception condition; addition-
ally, if the load misses in the cache, the execution pipeline
refrains from generating a transaction on the processor bus to
fill the missing cache line. If NP is predicted, the instruction
translator generates a set of microinstructions 126 to condi-
tionally perform the load operation; in one embodiment, if NP
is predicted, the set of microinstructions 126 may be similar
to the manner described in U.S. Provisional Application
61/473,062.

Although embodiments have been described with respect
to ARM ISA conditional non-branch instructions, other
embodiments are contemplated in which conditional non-
branch instructions of other ISAs are predicted by the predic-
tors. For example, the x86 ISA conditional non-branch
instructions, such as CMOVcc and SETcc may be predicted.

While various embodiments of the present invention have
been described herein, it should be understood that they have
been presented by way of example, and not limitation. It will
be apparent to persons skilled in the relevant computer arts
that various changes in form and detail can be made therein
without departing from the scope of the invention. For
example, software can enable, for example, the function,
fabrication, modeling, simulation, description and/or testing
of the apparatus and methods described herein. This can be
accomplished through the use of general programming lan-
guages (e.g., C, C++), hardware description languages (HDL)
including Verilog HDL, VHDL,, and so on, or other available
programs. Such software can be disposed in any known com-
puter usable medium such as magnetic tape, semiconductor,
magnetic disk, or optical disc (e.g., CD-ROM, DVD-ROM,
etc.), a network or other communications medium. Embodi-
ments of the apparatus and method described herein may be
included in a semiconductor intellectual property core, such
as a microprocessor core (e.g., embodied, or specified, in a
HDL) and transformed to hardware in the production of inte-
grated circuits. Additionally, the apparatus and methods
described herein may be embodied as a combination of hard-
ware and software. Thus, the present invention should not be
limited by any of the exemplary embodiments described
herein, but should be defined only in accordance with the
following claims and their equivalents. Specifically, the
present invention may be implemented within a microproces-
sor device which may be used in a general purpose computer.
Finally, those skilled in the art should appreciate that they can
readily use the disclosed conception and specific embodi-
ments as a basis for designing or modifying other structures
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for carrying out the same purposes of the present invention
without departing from the scope of the invention as defined
by the appended claims.

We claim:

1. A microprocessor that processes conditional non-branch
instructions, wherein each conditional non-branch instruc-
tion specifies a condition, wherein each conditional non-
branch instruction instructs the microprocessor to perform an
operation if the condition is satisfied and to not perform the
operation if the condition is not satisfied by condition flags of
the microprocessor, the microprocessor comprising:

a predictor, configured to provide a prediction about a

conditional non-branch instruction;
an instruction translator, configured to:
translate the conditional non-branch instruction into a
no-operation with condition code microinstruction
when the prediction predicts the condition will not be
satisfied, wherein the no-operation with condition
code microinstruction performs no operation other
than to enable an execution unit to scrutinize the pre-
diction; and

translate the conditional non-branch instruction into a
single operational with condition code microinstruc-
tion to unconditionally perform the operation when
the prediction predicts the condition will be satisfied
and that enables an execution unit to scrutinize the
prediction;

wherein the instruction translator translates instructions
of'x86 instruction set architecture (ISA) programs and
Advanced RISC Machines (ARM) ISA programs into
microinstructions defined by a microinstruction set of
the microprocessor, wherein the microinstructions
are encoded in a distinct manner from the manner in
which the instructions defined by the instruction sets
of the x86 ISA and ARM ISA are encoded; and

an execution pipeline, including an instruction issue unit
and a plurality of execution units, wherein the instruc-
tion issue unit is operable to issue the single operational
with conditional code microinstruction to a selected one
of the plurality of execution units, and the selected
execution unit is operable to execute the single opera-
tional with conditional code microinstruction.

2. The microprocessor of claim 1, wherein the predictor

comprises:

a static predictor, configured to decode the conditional
non-branch instruction and to provide the prediction to
the instruction translator based on decoding the condi-
tional non-branch instruction.

3. The microprocessor of claim 1, wherein the predictor

comprises:

a dynamic predictor, configured to maintain a history of
whether the condition was satisfied in previous execu-
tion instances of the conditional non-branch instruction
and to provide the prediction to the instruction translator
based on the history.

4. The microprocessor of claim 3, wherein the dynamic
predictor is configured to provide the prediction in response
to a fetch address when the conditional non-branch instruc-
tion is fetched from an instruction cache of the microproces-
sor at the fetch address, and without decoding the conditional
non-branch instruction.

5. The microprocessor of claim 1, wherein the predictor
comprises:

a static predictor, configured to decode the conditional
non-branch instruction and to provide a static prediction
based on decoding the conditional non-branch instruc-
tion;
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a dynamic predictor, configured to maintain a history of
whether the condition was satisfied in previous execu-
tion instances of the conditional non-branch instruction
and to provide a dynamic prediction based on the his-
tory; and

a selector, configured to maintain a history of accuracy of
the static and dynamic predictors in previous execution
instances of the conditional non-branch instruction and
to provide a selection to select the static prediction or the
dynamic prediction as the prediction based on the accu-
racy history.

6. The microprocessor of claim 5,

wherein the dynamic predictor is configured to provide the
prediction in response to a fetch address when the con-
ditional non-branch instruction is fetched from an
instruction cache of the microprocessor at the fetch
address, and without decoding the conditional non-
branch instruction;

wherein the selector is configured to provide the selection
in response to the fetch address when the conditional
non-branch instruction is fetched from the instruction
cache at the fetch address, and without decoding the
conditional non-branch instruction.

7. The microprocessor of claim 1, wherein the instruction
translator is further configured to:

translate the conditional non-branch instruction into a sec-
ond operational with condition code microinstruction to
conditionally perform the operation when the prediction
does not predict whether the condition will be satisfied.

8. The microprocessor of claim 1,

wherein the no-operation microinstruction or the opera-
tional with condition code microinstruction includes the
condition specified by the conditional non-branch
instruction;

wherein to execute the no-operation microinstruction or
operational with condition code microinstruction the
execution pipeline determines from the condition and
the condition flags whether the prediction was a mispre-
diction and, if so, to indicate the misprediction to the
instruction translator;

wherein, in response to the misprediction indication, the
instruction translator is further configured to re-translate
the conditional non-branch instruction into a second
operational with condition code microinstruction to
conditionally perform the operation.

9. The microprocessor of claim 1,

wherein the predictor is configured to maintain a history of
whether the condition was satisfied in previous execu-
tion instances of the conditional non-branch instruction
and to provide the prediction to the instruction translator
based on the history;

wherein the no-operation microinstruction or the opera-
tional with condition code microinstruction includes the
condition specified by the conditional non-branch
instruction;

wherein to execute the no-operation microinstruction or
the operational with condition code microinstruction the
execution pipeline makes a determination of whether the
condition flags satisfy the condition and provides the
determination to the predictor;

wherein the predictor is configured to update the history in
response to the determination from the execution pipe-
line.
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10. The microprocessor of claim 9,
wherein the predictor comprises:

a static predictor that provides a static prediction in
response to decoding the conditional non-branch
instruction;

a dynamic predictor that provides a dynamic prediction
based on the history; and

aselector that selects the static prediction or the dynamic
prediction;

wherein the selector is configured to maintain a history of
accuracy of the static and dynamic predictors in previous
execution instances of the conditional non-branch
instruction;

wherein the selector is configured to update the accuracy
history in response to the determination from the execu-
tion pipeline.

11. The microprocessor of claim 1, wherein the conditional
non-branch instructions are instructions defined by the
Advanced RISC Machines (ARM) instruction set architec-
ture.

12. The microprocessor of claim 1, wherein the conditional
non-branch instructions are instructions defined by the x86
instruction set architecture.

13. A method for processing conditional non-branch
instructions by a microprocessor having an instruction trans-
lator that translates instructions of x86 instruction set archi-
tecture (ISA) programs and Advanced RISC Machines
(ARM) ISA programs into microinstructions defined by a
microinstruction set of the microprocessor, wherein the
microinstructions are encoded in a distinct manner from the
manner in which the instructions defined by the instruction
sets of the x86 ISA and ARM ISA are encoded, wherein each
conditional non-branch instruction specifies a condition,
wherein each conditional non-branch instruction instructs the
microprocessor to perform an operation if the condition is
satisfied and to not perform the operation if the condition is
not satisfied by condition flags of the microprocessor, the
method comprising:

providing a prediction about a conditional non-branch
instruction;

translating the conditional non-branch instruction into a
no-operation with condition code microinstruction
when the prediction predicts the condition will not be
satisfied, wherein the no-operation with condition code
microinstruction performs no operation other than to
enable an execution unit to scrutinize the prediction;

translating the conditional non-branch instruction into a
single operational with condition code microinstruction
to unconditionally perform the operation when the pre-
diction predicts the condition will be satisfied; and

an instruction issue unit issuing the single operational with
conditional code microinstruction to a selected one of
the plurality of execution units;

the selected execution unit executing the single operational
with condition code microinstruction, wherein the
instruction issue unit and selected execution unit are
parts of a hardware execution pipeline of the micropro-
Ccessor.

14. The method of claim 13, further comprising:

decoding the conditional non-branch instruction;

wherein said providing a prediction comprises providing
the prediction based on said decoding the conditional
non-branch instruction.
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15. The method of claim 13, further comprising:
maintaining a history of whether the condition was satis-
fied in previous execution instances of the conditional
non-branch instruction;
wherein said providing a prediction comprises providing
the prediction to the instruction translator based on the
history.
16. The method of claim 13, further comprising:
maintaining a history of whether the condition was satis-
fied in previous execution instances of the conditional
non-branch instruction; and
maintaining a history of accuracy of static and dynamic
predictions in previous execution instances of the con-
ditional non-branch instruction;
wherein said providing a prediction comprises:
providing the static prediction based on decoding the
conditional non-branch instruction;
providing a dynamic prediction based on the history of
whether the condition was satisfied in previous execu-
tion instances of the conditional non-branch instruc-
tion; and
selecting the static prediction or the dynamic prediction
as the prediction based on the accuracy history.
17. The method of claim 13, further comprising:
translating the conditional non-branch instruction into a
second operational with condition code microinstruc-
tion to conditionally perform the operation when the
prediction does not predict whether the condition will be
satisfied.
18. The method of claim 13,
wherein the no-operation microinstruction or the opera-
tional with condition code microinstruction includes the
condition specified by the conditional non-branch
instruction;
wherein said executing the no-operation microinstruction
or the operational with condition code microinstruction
comprises determining from the condition and the con-
dition flags whether the prediction was a misprediction
and, if so, indicating the misprediction;
the method further comprising:
re-translating the conditional non-branch instruction
into a second operational with condition code micro-
instruction to conditionally perform the operation, in
response to said indicating the misprediction.
19. The method of claim 13, further comprising:
maintaining a history of whether the condition was satis-
fied in previous execution instances of the conditional
non-branch instruction;
wherein said providing a prediction about a conditional
non-branch instruction comprises providing the predic-
tion based on the history;
wherein the no-operation microinstruction or the opera-
tional with condition code microinstruction includes the
condition specified by the conditional non-branch
instruction;
wherein said executing the no-operation microinstruction
or the operational with condition code microinstruction
comprises making a determination of whether the con-
dition flags satisfy the condition and providing the deter-
mination;
the method further comprising:
updating the history in response to said making a deter-
mination.
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20. The method of claim 19,
wherein said providing a prediction about a conditional
non-branch instruction comprises:
providing a static prediction in response to decoding the
conditional non-branch instruction;
providing a dynamic prediction based on the history;
and
selecting the static prediction or the dynamic prediction;
wherein the method further comprises:
maintaining a history of accuracy of the static and
dynamic predictions in previous execution instances
of the conditional non-branch instruction; and
updating the accuracy history in response to the deter-
mination.
21. A non-transitory computer readable medium storing a

15 computer program product for use with a computing device,
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the computer program product comprising:

computer readable program code embodied in said
medium, for specitying a microprocessor that processes
conditional non-branch instructions, wherein each con-
ditional non-branch instruction specifies a condition,
wherein each conditional non-branch instruction
instructs the microprocessor to perform an operation if
the condition is satisfied and to not perform the opera-
tion if the condition is not satisfied by condition flags of
the microprocessor, the computer readable program
code comprising:
first program code for specifying a predictor, configured
to provide a prediction about a conditional non-
branch instruction;
second program code for specifying an instruction trans-
lator, configured to:
translate instructions of x86 instruction set architec-
ture (ISA) programs and Advanced RISC
Machines (ARM) ISA programs into microinstruc-
tions defined by a microinstruction set of the micro-
processor, wherein the microinstructions are
encoded in a distinct manner from the manner in
which the instructions defined by the instruction
sets of the x86 ISA and ARM ISA are encoded;
translate the conditional non-branch instruction into a
no-operation with condition code microinstruction
when the prediction predicts the condition will not
be satisfied, wherein the no-operation with condi-
tion code microinstruction performs no operation
other than to enable an execution unit to scrutinize
the prediction; and
translate the conditional non-branch instruction into a
single operational with condition code microin-
struction to unconditionally perform the operation
when the prediction predicts the condition will be
satisfied; and
third program code for specifying an execution pipeline
including an instruction issue unit and a plurality of
execution units, wherein the instruction issue unit is
operable to issue the single operational with condi-
tional code microinstruction to a selected one of the
plurality of execution units, and the selected execu-
tion unit is operable to execute the single operational
with conditional code microinstruction.
22. The non-transitory computer readable medium of claim

21, wherein the computer readable storage medium is
selected from the set of a disk, tape, or other magnetic, opti-
cal, or electronic storage medium and a network or wire line.
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